

PROYECTO:

MEJORAMIENTO Y AMPLIACION DEL SERVICIO DE PROTECCION EN PUNTOS VULNERABLES POR INUNDACIONES EN LA CUENCA DEL RIO CAPLINA EN LOS DISTRITOS DE PACHIA, CALANA Y POCOLLAY DE LA PROVINCIA DE TACNA - DEPARTAMENTO DE TACNA

Código Único de Inversiones 2476055

www.regiontacna.gob.pe
Gregorio Albarracín 526, Tacna 23001
30/12/2021

ESTUIO DE DELIMITACIÓN DE FAJA MARGINAL CON MODELAMIENTO HIDRÁULICO							
Coordinad proyecto:	or	Arq. Marc Arquitecto	o A. Gutiérrez Castañón			Firma:	
Ingeniero Ing. Gabi Responsable: Ingeniero			iel Fabricio Mejia Medina Civil			Firma:	
Área / Oficina:		Gerencia Regional de Infraestructura Subgerencia de Estudios			Firma:		
Aprobación: Oficina Ej			ecutiva de Supervisión			Firma:	
Revisión	Revisión Fecha		Elaborado	Descripción	Aprobado		Revisado
Comentarios y/o Observaciones:							

INDICE

1 (GENERALIDADES	
1.1	INTRODUCCIÓN	
1.2	OBJETIVOS Y METAS	10
1.2.1	OBJETIVO GENERAL	10
1.2.2	OBJETIVO ESPECÍFICO	10
1.2.3	METAS	10
1.3	JUSTIFICACIÓN	10
1.4	BASE LEGAL	10
1.5	ALCANCES	11
2 I	DESCRIPCIÓN GENERAL DEL TRAMO DE ESTUDIO	12
2.1	UBICACIÓN	12
2.1.1	UBICACIÓN POLÍTICA	12
2.1.2	UBICACIÓN HIDROGRÁFICA	12
2.1.3	UBICACIÓN ADMINISTRATIVA	13
2.1.4	UBICACIÓN GEOGRÁFICA	13
2.2	DESCRIPCIÓN DEL TRAMO DE ESTUDIO	13
2.3	POBLACIÓN BENEFICIARIA	14
2.4	INVENTARIO DE PROPIEDADES EXISTENTES	14
3	ANALISIS DE MAXIMAS AVENIDAS	15
3.1	DESCRIPCIÓN UNIDADES HIDROGRÁFICAS	15
3.1.1	DELIMITACIÓN	15
3.1.2	CARACTERIZACIÓN GEOMORFOLÓGICA	20
3.2	PROCESAMIENTO INFORMACIÓN PLUVIOMÉTRICA	35
3.2.1	GENERALIDADES	35
3.2.2	RED ESTACIONES	36
3.2.3	GENERACION DE PRECIPITACIONES EN EL PUNTO DE INTERES	36
3.2.4	ANALISIS ESTADISTICO DE DATOS HIDROLOGICOS	50
3.3	DETERMINACION DE PRECIPITACIONES DE DISEÑO	60
3.3.1	DETERMINACION DE LAS CURVAS I-D-F	60
3.4	GENERACION DE HIETOGRAMAS EN LAS SUBCUENCAS	66
3.5	DESCARGAS DE DISEÑO	73
3.5.1	SELECCIÓN DE PREIODO DE RETORNO	73
3.6	GENERACION DE MAXIMA AVENIDAS CON HEC-HMS	76
3.6.1	CAUALES MAXIMO METODO HIDROLOGICO CON HEC-HMS	76
3.6.2	RESUMEN	94

4	TOPOGRAFÍA	100
4.1	CONTROL DE COORDENADAS	100
4.1.1	HORIZONTAL	100
4.1.2	VERTICAL	101
4.2	GEORREFERENCIACIÓN	101
4.2.1	SISTEMA DE REFERENCIA	101
4.2.2	PUNTOS GEODÉSICOS ORDEN C	102
4.3	PUNTOS DE CONTROL Y POLIGONAL DE APOYO	104
4.4	LEVANTAMIENTO TOPOGRÁFICO	106
4.4.1	CONSIDERACIONES PREVIAS	106
4.4.2	METODOLOGÍA DE TRABAJO	107
5	SIMULACION HIDRAULICA	109
5.1	MARCO TEORICO	109
5.1.1	TIPOS DE MODELOS HIDRODINAMICOS	109
5.1.2	ECUACIONES HIDRODINAMICAS	110
5.2	SIMULACION HIDRAULICA PARA DELIMITACION DE FAJA MARGINAL CON IBER	111
5.2.1	GEOMETRIA DEL CAUCE – MODELO DIGIAL MDT	111
5.3	CAUDAL DE MAXIMA AVENIDA Y CONDICIONES DE FRONTERA	113
5.4	COEFICIENTE DE PERDIDA DE ENERGIA	114
5.5	SIMULACIÓN HIDRÁULICA	117
5.6	GENERACIÓN DE MAPAS DE INUNDACIÓN Y DELIMITACIÓN DEL LÍMITE SUPERIOR	
LA RI	BERA	117
6 I	DELIMITACIÓN DE LA FAJA MARGINAL	118
6.1	DIMENSIONAMIENTO DE LA FAJA MARGINAL	118
6.1.1	ANCHO MÍNIMO	118
6.2	LIMITES DE LA FAJA MARGINAL	119
6.2.1	LIMITES DE LA FAJA MARGINAL DEL CAUCE DEL RIO CAPLINA	119
6.2.2	HITOS MINIMOS A SER MONUMETADOS – CAUCE RIO CAPLINA	121
6.2.3	HITOS DE CONCRETO	123
7 (CONCLUSIONES Y RECOMENDACIONES	124
7.1	CONCLUSIONES	124
7.2	RECOMENDACIONES	124
FUEN	ITES BIBLIOGRÁFICAS	125
ANE	(os	126
ΔNEX	(O L DATOS SENAMHI	127

ANEXO II ANALISIS DE PRECIPITACION MAXIMA 24 HORAS – CALCULOS HIDROLO	OGICOS
PYTHON	
ANEXO III CURVAS IDF	
ANEXO IV CERTIFICADO DE PUNTOS GEODÉSICOS	
ANEXO V UBICACIÓN DE LOS VÉRTICES DE LA FAJA MARGINAL	
ANEXO VI MAPAS	192
Índice de Tablas	
Tabla 1 Población por distritos según CENSO 2017	14
Tabla 2 Parámetros de sub cuencas de interés	15
Tabla 3 <i>Polígono de Thiessen</i>	16
Tabla 4 Clasificación de cuencas según área	20
Tabla 5 Clasificación por longitud de cauce principal	21
Tabla 6 Clasificación por Coeficiente de compacidad	22
Tabla 7 Clasificación por Factor de Forma	23
Tabla 8 Clasificación por Altitud Media	25
Tabla 9 Clasificación por Pendiente media de la Cuenca	26
Tabla 10 <i>Curva hipsométrica</i>	28
Tabla 11 Curva Hipsométrica y Frecuencia de Altitudes – Cuenca del Proyecto Caplina	33
Tabla 12 <i>Tiempo de Concentración</i>	34
Tabla 13 Parámetros Morfométricos de la Cuenca Caplina	34
Tabla 14 Relación de Estaciones Seleccionadas para el Análisis de la Precipitación	36
Tabla 15 Precipitaciones Máximas en las Sub Cuencas	36
Tabla 16 Valores de Kn para la prueba de los datos dudosos	38
Tabla 17 Precipitaciones Máximas Anuales – Estaciones seleccionadas	39
Tabla 18 Precipitación Máxima 24 horas – Estación Paucarani	41
Tabla 19 Detección de Outliers – Estación Paucarani	42
Tabla 20 Precipitación Máxima 24 horas – Estación Talabaya	43
Tabla 21 Detección de Outliers – Estación Talabaya	44
Tabla 22 Precipitación Máxima 24 horas – Estación Palca	45
Tabla 23 Detección Outliers – Estación Palca	46
Tabla 24 Precipitación Máxima 24 horas – Estación Calientes	47
Tabla 25 Detección Outliers – Estación Calientes	48

Tabla 26 Precipitaciones Máximas Anuales corregido por valores atípicos – Estad seleccionadas	
Tabla 27 Resumen de la Precipitación Máxima en 24 horas de la Región Tacna	
Tabla 28 Valores K-Tabla según cantidades valores de la muestra	
Tabla 29 Resultados de K-Tabla para cada estación según niveles de significancia	
Tabla 30 Resultados de funciones probabilísticas vs estaciones seleccionadas	
Tabla 31 Prueba de Ajuste de Kolgomorov Smirnov – Funciones probabilísticas de mejor ajus	
Tabla 32 Precipitaciones Máximas 24 horas para diferentes Periodos de Retorno de las Estad Seleccionadas	
Tabla 33 Corrección de las Precipitaciones Máximas 24 horas para diferentes Periodos de Rede las Estaciones Seleccionadas	
Tabla 34 Precipitaciones Máximas – Paucarani	61
Tabla 35 Intensidades Máximas – Estación Paucarani	62
Tabla 36 Resultados de la Regresión Lineal Múltiple PMA – Estación Paucarani	62
Tabla 37 Curva IDF – Estación Paucarani	63
Tabla 38 Ecuación de Curva Intensidad, Duración y Frecuencia – Estaciones Seleccionadas.	65
Tabla 39 Ecuación de Curva Intensidad, Duración y Frecuencia – Sub Cuencas	65
Tabla 40 Bloques Alterno – Hietograma	66
Tabla 41 Precipitaciones registradas el 08 de febrero del 2019	67
Tabla 42 Valores para Periodo de Retorno T (años)	74
Tabla 43 Valores Máximos recomendados de riesgo admisible de obras de drenaje	74
Tabla 44 Riesgo de vida útil de las Estructuras Hidráulicas del Proyecto	75
Tabla 45 Periodos de retorno de diseño para el proyecto	75
Tabla 46 Numero de Curva CN – (SCS, de los EEUU, 1964)	76
Tabla 47 Condición Hidrológica	78
Tabla 48 Condición de Humedad Antecedentes Propuesto por SC	79
Tabla 49 Numero de Curva de las Cuencas y Subcuencas de estudio	86
Tabla 50 Parámetros de Perdidas en las Subcuencas	86
Tabla 51 Calibrados Parámetros de Perdidas en las Subcuencas	87
Tabla 52 Parámetros del Hidrograma Snyder	88
Tabla 53 Calculo de Parámetros de Muskingum	88
Tabla 54 Lamina de Precipitación (mm) máxima calculado para cada Estación seleccionada	89
Tabla 55 Caudales Máximos – Método HEC-HMS	92
Tabla 56 Várticas goodásicas	101

Tabla 57 Representación cartográfica	102
Tabla 58 Ubicación de los puntos geodésicos de orden C	102
Tabla 59 Elevación y factores de escala de los puntos geodésicos de orden C	103
Tabla 60 Puntos de control para el levantamiento topográfico del tramo del río Caplina	105
Tabla 61 Comparación de Modelamientos Numéricos y Recomendaciones de Aplicación	110
Tabla 62 Ubicación de vértices de la Faja Marginal Margen Derecho en Coordenadas UTM W 19 Sur	
Tabla 63 Ubicación de vértices de la Faja Marginal Margen Izquierda en Coordenadas UTM V 19 Sur	
Tabla 64 <i>Ubicación de hitos monumentados en el límite de la faja marginal – Margen Derech</i>	o. 121
Tabla 65 Ubicación de monumentos en el límite de la faja marginal – Margen Izquierdo	122
Tabla 66 Curva IDF – Estación Paucarani	154
Tabla 67 Curva IDF – Estación Talabaya	155
Tabla 68 Curva IDF – Estación Palca, Subcuencas W600,W620,W640,W660,W670,W700	
Tabla 69 Curva IDF – Estación Calientes, Subcuencas W740,W760,W770,W780	157
Tabla 70 Curva IDF – Subcuenca W520	158
Tabla 71 Curva IDF – Subcuenca W580	159
Tabla 72 Curva IDF – Subcuenca W610	160
Tabla 73 Curva IDF – Subcuenca W710	161
Tabla 74 Curva IDF – Subcuenca W730	162
Tabla 75 Curva IDF – Subcuenca W750	163

Índice de Figuras

Figura 1 Ubicación política del TRC	12
Figura 2 Fotografía Bocatoma Challata	14
Figura 3 Polígono de Thiessen	17
Figura 4 Flujograma para la delimitación de unidad hidrográficas con Model Builder	18
Figura 5 Sub Cuencas del Proyecto	19
Figura 6 Curva hipsométrica	27
Figura 7 Orden de Corrientes	29
Figura 8 Precipitación Máxima de Estaciones seleccionadas	51
Figura 9 Estación PAUCARANI – Distribución WEI	57
Figura 10 Estación TALABAYA – Distribución PE3	58
Figura 11 Estación PALCA – Distribución GLD	58
Figura 12 Estación CALIENTES – Distribución GEV	59
Figura 13 Curva IDF – Estación Paucarani	64
Figura 14 Hietograma de Precipitación – Estación Paucarani	68
Figura 15 Hietograma de Precipitación – Estación Talabaya	69
Figura 16 Hietograma de Precipitación – Estación Palca	70
Figura 17 Hietograma de Precipitación – Calientes	71
Figura 18 Hietograma de Precipitación – 08 de febrero del 2019	72
Figura 19 Riesgo de por lo menos una excedencia del evento de diseño durante la vida útil	73
Figura 20 Esquena Topológico de la cuenca del Rio Caplina	82
Figura 21 Numero de Curva de la Cuenca y Subcuenca de Estudio	83
Figura 22 Mapa de Uso de Suelos Cuenca Caplina	84
Figura 23 Mapa de Numero de Curva	85
Figura 24 Punto de Control 01 – Bocatoma Challata	90
Figura 25 Punto de Control 02 – Puente 5 en el Sector Piedra Blanca	91
Figura 26 Hidrograma de Avenida del 08 de Febrero del 2019	94
Figura 27 Hidrograma de Avenida para 50 años de periodo de retorno	95
Figura 28 Hidrograma de Avenida para 100 años de periodo de retorno	96
Figura 29 Hidrograma de Avenida para 140 años de periodo de retorno	97
Figura 30 Hidrograma de Avenida para 175 años de periodo de retorno	98
Figura 31 Hidrograma de Avenida para 500 años de periodo de retorno	99
Figura 32 Ubicación Geográfica de los puntos geodésicos de orden "C"	. 104

Figura 33 Configuración Malla no estructurada	. 111
Figura 34 Malla no estructurada del tramo en estudio del rio Caplina (28.06 Km)	. 112
Figura 35 Malla no estructurada aguas arriba bocatoma Challata	. 112
Figura 36 Numero de nodos y elementos de la malla no estructurada	. 113
Figura 37 Condición contorno progresiva 28 + 060	. 114
Figura 38 Coeficiente de rugosidad de Manning ingresando al modelo	. 115
Figura 39 Coeficiente de rugosidad de Manning en puente Piedra Blanca	. 115
Figura 40 Coeficientes de rugosidad de Manning de tramo en estudio del Rio Caplina (28.06	Km)
	. 116
Figura 41 Resultados simulación hidráulica puente Piedra Blanca	. 117

ESTUDIO DE DELIMITACIÓN DE FAJA MARGINAL CON MODELAMIENTO HIDRÁULICO

"MEJORAMIENTO Y AMPLIACION DEL SERVICIO DE PROTECCION EN PUNTOS VULNERABLES POR INUNDACIONES EN LA CUENCA DEL RIO CAPLINA EN LOS DISTRITOS DE PACHIA, CALANA Y POCOLLAY DE LA PROVINCIA DE TACNA - DEPARTAMENTO DE TACNA"

1 GENERALIDADES

1.1 INTRODUCCIÓN

El Estado dentro de las gestiones prospectivas de riesgos delega a la Autoridad Nacional del Agua la acción reguladora que acompaña a los planes de desarrollo y de ordenamiento territorial y a la implementación de la gestión correctiva de riesgos.

La ANA es la autoridad competente en las fajas marginales que constituyen bienes de dominio público hidráulico, caracterizados por ser inalienables (el estado no puede enajenar bienes), imprescriptibles (su posesión prolongado del tiempo no da derecho a propiedad) e intangibles (existen actividades prohibidas) por tanto es una zona de reglamentación especial.

Según el Art. 17 del Reglamento para la Delimitación y Mantenimiento de Fajas marginales, "17.1. La AAA puede autorizar la ocupación futura de la faja marginal para la ejecución de obras de infraestructura hidráulica o de servicios públicos. Esta autorización se otorga por un período de dos (02) años y no faculta la ejecución de obras o actividades en la faja marginal."

Con el fin de garantizar la protección, el uso primario del agua, el libre tránsito, la pesca, caminos de vigilancia y otros servicios, la Ley N° 29338 "Ley de Recursos Hídricos" (LRH) establece explícitamente la necesidad de mantener una faja marginal en los terrenos aledaños a los cauces naturales o artificiales. La referida ley también señala que la Autoridad Administrativa del Agua (AAA) se encargará de determinar las dimensiones de la referida faja marginal tomando en cuenta los criterios que el Reglamento en la citada ley establece.

1.2 OBJETIVOS Y METAS

1.2.1 **OBJETIVO GENERAL**

Proponer la delimitación de la faja marginal del tramo de 28.060 Km del río Caplina en los distritos de Pachía, Calana y Pocollay, provincia de Tacna, departamento de Tacna.

1.2.2 **OBJETIVO ESPECÍFICO**

- a) Determinar el límite superior de la ribera del río Caplina en el tramo de estudio.
- b) Determinar los anchos mínimos y anchos mayores de la faja marginal en cada tramo de estudio del río Caplina.
- c) Establecer las coordenadas del sistema Universal Transversal Mercator con Datum WGS84 de la ubicación física de los hitos de señalización de la faja marginal y sus correspondientes vértices.

1.2.3 **METAS**

Establecer la delimitación de la faja marginal en 28.060 Km del río Caplina en los distritos de Pachía, Calana y Pocollay, provincia de Tacna, departamento de Tacna.

1.3 JUSTIFICACIÓN

La delimitación de la faja marginal de los 28.060 Km. del río Caplina del Proyecto CUI 2476055 permitirá establecer los bienes de dominio público hidráulico para el libre tránsito y caminos de vigilancia en los predios rurales y urbanos. Asimismo, la faja marginal en mención establecerá las áreas cuyos usos no están permitidos los asentamientos humanos; actividades agrícolas permanentes o intensivas; y, otras actividades que podrían afectar la faja marginal mencionada.

Por otro lado, la aprobación de la delimitación de faja marginal de los 28.060 Km del río Caplina con respecto al Proyecto CUI 2476055 es permitir a la Autoridad Administrativa del Agua Caplina – Ocoña (AAA-CO) poder autorizar al Gobierno Regional de Tacna la ejecución de obras de defensa ribereña en la ribera del río Caplina cuando la entidad lo solicite.

1.4 BASE LEGAL

Los Artículos 73° a 89° del Título V Protección del Agua; y, el Artículo 119° del Título XI Los Fenómenos Naturales de la Ley de Recursos Hídricos, el cual fue aprobado por Ley N°29338 y modificado por Ley N°30640.

Los Artículos 108° a 120° del Capítulo III Cauces, Riberas y Faja Marginal del Título V Protección del Agua del Reglamento de la Ley de Recursos Hídricos Ley N°29338, el cual fue aprobado por Decreto Supremo N°001-2010-AG y modificado por Decreto Supremo N°009-2021-MIDAGRI.

Los Artículos 1° a 18° de los cuatro títulos; disposiciones complementarias; y, anexos del Reglamento para la Delimitación y Mantenimiento de Fajas Marginales, el cual fue aprobado por Resolución Jefatural Nº332-2016-ANA.

Estudio de Delimitación y Codificación de las Unidades Hidrográficas del Perú, el cual fue aprobado por Resolución Ministerial N°033-2008-AG.

1.5 ALCANCES

Las fajas marginales se han venido determinando bajo el marco de la Ley Nº17752 "Ley General de Aguas", en base a directivas y lineamientos como el Instructivo Técnico NºOU1-DGAS-DODR, vigente desde el 28/10/1980.

Al entrar en vigencia la Ley Nº29338 "Ley de Recursos Hídricos" y su reglamento aprobado por Decreto Supremo Nº001-2010-AG y publicado el 24/03/2010, las normas basadas en la Ley General de Aguas quedaron automáticamente derogadas, por lo que resulta necesario establecer nuevas normas que permitan la determinación de las fajas marginales, en concordancia con lo que establece la Ley Nº29338.

La definición de fajas marginales, según el Artículo 113° del Reglamento de la Ley de Recursos Hídricos Ley N°29338, dice que "las fajas marginales son bienes de dominio público hidráulico. Están conformadas por las áreas inmediatas superiores a las riberas de las fuentes de agua, naturales o artificiales"

Según Artículo 8° de la Resolución Jefatural N°332-2016-ANA, la determinación de los límites superiores de la ribera de cauces naturales son bajo las metodologías de modelamiento hidráulico y huella máxima.

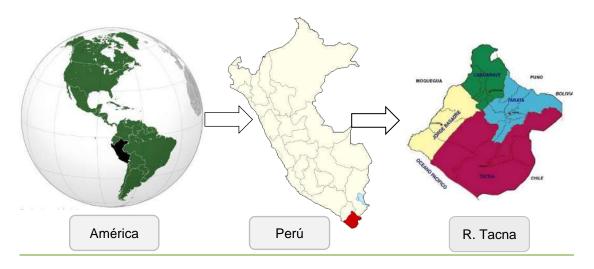
El estudio de la faja marginal de los 28.060 Km del río Caplina permitirá establecer el dimensionamiento de la faja marginal en cada tramo del río; señalización; las condiciones de los predios agrícolas ubicados en las márgenes del rio Caplina; y, las posibles actividades en la faja marginal que pudiesen ser autorizadas por la Autoridad Nacional del Agua, de acuerdo al Plan de desarrollo urbano de las Municipalidades de Pachia, Calana y Pocollay.

2 DESCRIPCIÓN GENERAL DEL TRAMO DE ESTUDIO

El Tramo de 28.060 Km del cauce del río Caplina que es objeto de estudio es designado con las siglas TRC para abreviar su nombre.

2.1 UBICACIÓN

2.1.1 UBICACIÓN POLÍTICA


El TRC en estudio está ubicado en la jurisdicción política de los distritos Pachia, Calana y Pocollay; provincia Tacna; departamento Tacna.

Departamento: Tacna

Provincia : Tacna

Distritos : Pachia (230106), Calana (230103) y Pocollay (230108)

Figura 1 Ubicación política del TRC

Nota: Shapefile descargado (https://geosnirh.ana.gob.pe/).

2.1.2 UBICACIÓN HIDROGRÁFICA

El TRC en estudio está ubicado en la cuenca Caplina, la cual presenta una superficie de 909 Km² y pertenece a la región hidrográfica del Pacífico.

Unidad Hidrográfica Nivel 1 : Región Hidrográfica del Pacífico

Unidad Hidrográfica Nivel 2 : 13

Unidad Hidrográfica Nivel 3 : 131

Unidad Hidrográfica Nivel 4 : 1315

Unidad Hidrográfica Nivel 5 : Intercuenca (13155) y Caplina (13156)

2.1.3 UBICACIÓN ADMINISTRATIVA

El TRC en estudio está ubicado en la jurisdicción de la Autoridad Administrativa del Agua (AAA) de Caplina-Ocoña y Autoridad Local del Agua (ALA) de Caplina-Ocoña.

Autoridad Administrativa del Agua : Caplina-Ocoña

Autoridad Local del Agua : Caplina-Locumba

2.1.4 UBICACIÓN GEOGRÁFICA

Los límites entre los cuales está ubicado el TRC según el sistema de coordenadas proyectadas Universal Transverse Mercator (UTM) con Datum WGS 84 son:

Sur : 8 030 061 – 8 007 899 m

Oeste: 383 568 – 371 136 m

Zona : 19 K

2.2 DESCRIPCIÓN DEL TRAMO DE ESTUDIO

El TRC en estudio, comienza en la coordenada proyectada 8 030 060 S y 383 568 E, el cual está cerca de la Bocatoma Challata, la cual es administrada por la Junta de Usuarios del Sector Hidráulico Menor Clase C Bajo Caplina; y, finaliza en la coordenada proyectada 8 007 898 S y 371 135 E, la cual está ubicada en el Sector Pago Peschay del distrito Pocollay.

En el cauce del río Caplina, fue construido el recodo Karamolle, el cual está ubicado en la coordenada proyectada 8 013 598 S y 373 914 E; y, asimismo, fue construida la canalización del río Caplina desde la ubicación del recodo mencionado hasta el puente Piedra Blanca, el cual está ubicado en la coordenada proyectada 8 013162 S y 374 177 E. Debido a las construcciones del recodo Karamolle y la canalización, el río Caplina fue desviado en dirección al cauce principal de la Intercuenca 13155.

A partir de la explicación del párrafo anterior, el TRC en estudio está ubicado en dos unidades hidrográficas de nivel 5, las cuales son Intercuenca (13155) y Caplina (13156).

El TRC en estudio, mide 28.060 Km desde la Bocatoma Challata (1557 m.s.n.m.) hasta el Sector Pago Peschay del distrito Pocollay (630 m.s.n.m.). Además, el alineamiento del cauce del TRC presenta pendientes longitudinales entre 1.2 y 5.5 %.

2.3 POBLACIÓN BENEFICIARIA

La zona de estudio es comprendida por los distritos Pachia, Calana y Pocollay; los cuales comprenden una población de 23 668 habitantes según resultados del CENSO 2017 del Instituto Nacional de Estadística e Informática (INEI), ver Tabla 1. Los distritos mencionados, son afectados por las inundaciones en épocas de verano (enero a marzo).

Tabla 1 Población por distritos según CENSO 2017

ld	Ubigeo	Distrito	Población (Hab)
1	230106	Pachia	2 062
2	230103	Calana	2 979
3	230108	Pocollay	18 627

Nota: Distritos de la provincia Tacna. Fuente: INEI 2018.

2.4 INVENTARIO DE PROPIEDADES EXISTENTES

El tramo en estudio del río Caplina, está sujeto a erosión fluvial, colmatación de material arrastrado por la avenida e inundación fluvial en ambas márgenes del río. En las recientes avenidas, por ejemplo, 08 febrero del 2019, fueron socavados gaviones y emboquillados de roca en el tramo de estudio; asimismo, también fue evidenciado sectores donde hubo inundaciones y los puentes tuvieron comportamiento hidráulico de un vertedero y agujo sumergido debido que el tirante de la avenida superó el nivel superior del puente.

Asimismo, también se evidenció que un huayco afectó la bocatoma Challata, tal como lo muestra la Figura 2.

Figura 2 Fotografía Bocatoma Challata

Nota: Fotografía publicada el 30 enero del 2019. Fuente: Proyecto Especial Tacna (PET) del Gobierno Regional de Tacna (GRT).

3 ANALISIS DE MAXIMAS AVENIDAS

3.1 DESCRIPCIÓN UNIDADES HIDROGRÁFICAS

3.1.1 **DELIMITACIÓN**

3.1.1.1 MODELO ELEVACIÓN DIGITAL

La cuenca de interés se ha definido a través de la zona de intervención del eje del cauce principal del río Caplina, el área de influencia hídrica directa es la cabecera de la cuenca Caplina.

Esta cuenca y Subcuencas han sido delimitada a través del software Arcgis 10.8 y su extensión Hec-Geo HMS, en el Figura 4 podemos ver el proceso para la delimitación de cuencas y sub cuencas como única variable de ingreso tenemos el ráster del Modelo de Elevación Digital (DEM) de resolución 30mx30m; además con esta herramienta hemos asignado nombres de forma automática a las sub cuencas principales tal como se resume en la Tabla 2

Tabla 2 Parámetros de sub cuencas de interés

ld	Sub cuenca	A (Km2)	P (Km)	L (Km)	Lc (Km)	S (%)	Este (m)	Norte (m)
1	W520	139.79	71.84	24.18	11.26	46.05	399892.74	8050129.12
2	W580	179.25	102.54	35.70	21.24	40.04	408561.68	8047855.72
3	W600	4.90	14.89	4.57	1.81	51.59	393102.55	8042195.41
4	W610	19.26	26.68	9.40	4.76	48.12	390410.47	8043929.83
5	W620	0.91	6.38	1.83	0.54	54.32	391665.50	8040751.96
6	W640	45.28	46.56	13.45	5.16	43.07	389925.81	8038474.77
7	W660	50.74	49.29	17.18	8.26	49.29	398596.06	8039542.90
8	W670	79.23	66.74	23.09	11.47	45.85	401740.14	8035566.18
9	W700	28.54	35.74	12.77	5.86	38.80	391275.60	8034313.35
10	W710	47.35	46.19	16.53	7.75	41.63	385023.94	8032179.17
11	W720	12.03	27.41	10.07	4.36	41.54	397151.44	8030534.57
12	W730	43.62	53.61	20.58	11.49	40.81	389163.79	8026623.22
13	W740	23.97	37.50	14.48	8.46	28.72	379720.99	8027887.01
14	W750	19.72	36.90	14.27	6.72	37.27	386626.49	8028302.30
15	W760	7.84	18.96	6.12	2.62	21.30	381786.70	8025010.50
16	W770	6.22	24.43	7.83	3.54	14.53	379602.53	8024209.58
17	W780	9.92	33.43	12.52	4.81	15.31	378353.75	8021318.02

Nota: A: área subcuenca. P: perímetro subcuenca. L: longitud cauce más largo. Lc: longitud cauce al Centroide medido desde la desembocadura. S: pendiente subcuenca. Las coordenadas UTM corresponden al Centroide de las Subcuencas. Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Delimitada la cuenca y sus respectivas sub cuencas, utilizamos el método del polígono de Thiessen para calcular el área de influencia de cada estación meteorológica seleccionada sobre cada sub cuenca de interés, las estaciones seleccionadas son Paucarani, Talabaya, Palca y Calientes; resumimos en el siguiente cuadro:

Tabla 3 Polígono de Thiessen

Sub Cuenca	Área Total (Km2)	Estación	Área (Km2)	%
		Palca	24.17	17
W520	139.79	Talabaya	111.10	80
		Paucarani	4.52	3
		Palca	82.25	46
W580	179.25	Talabaya	2.42	1
		Paucarani	94.58	53
W600	4.90	Palca	4.90	100
W610	19.26	Palca	16.65	86
VV610	19.20	Talabaya	2.61	14
W620	0.91	Palca	0.91	100
W640	45.28	Palca	45.28	100
W660	50.74	Palca	50.74	100
W670	79.23	Palca	79.23	100
W700	28.54	Palca	28.54	100
W710	47.35	Calientes	28.90	61
VV / 10	47.30	Palca	18.45	39
W720	12.03	Palca	12.03	100
W/720	40.00	Calientes	23.12	53
W730	43.62	Palca	20.51	47
W740	23.97	Calientes	23.97	100
\\/ZEC	40.70	Calientes	13.85	70
W750	19.72	Palca	5.87	30
W760	7.84	Calientes	7.84	100
W770	6.22	Calientes	6.22	100
W780	9.92	Calientes	9.92	100

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

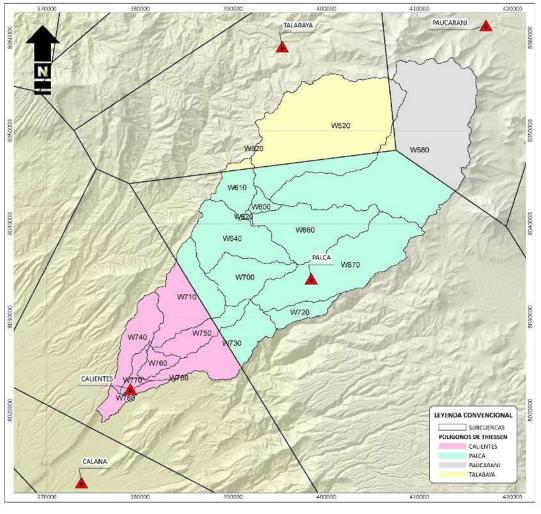
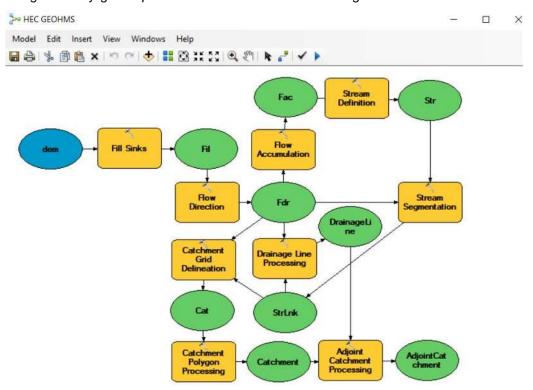


Figura 3 Polígono de Thiessen

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

3.1.1.2 ETAPAS DELIMITACIÓN


Las etapas de delimitación de las unidades hidrográficas fueron:

- Fill sinks
- Flow direction
- Flow accumulation
- Stream definition
- Stream segmentation
- Catchmente grid delineation
- Drainage line processing
- Catchment polygon processing
- Adjoint catchment processing

Posterior a las etapas de delimitación mencionadas fue realizado el post procesamiento para verificar el trazo automático de la línea divisoria de las unidades hidrográficas generadas.

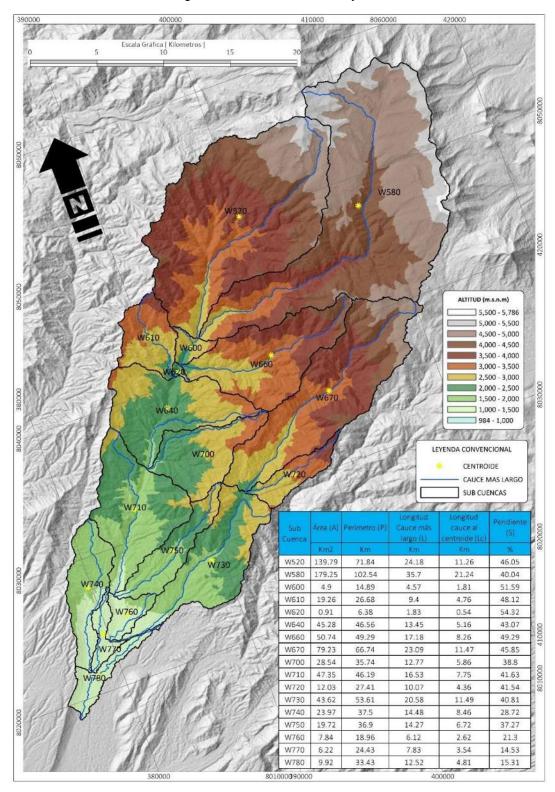

Figura 4, muestra esquemáticamente el procedimiento para delimitar unidades hidrográficas a partir de un Modelo de Elevación Digital (DEM) de tamaño de pixel de 30 m.

Figura 4 Flujograma para la delimitación de unidad hidrográficas con Model Builder

Nota: Entorno gráfico de Model Builder. Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Figura 5 Sub Cuencas del Proyecto

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

3.1.2 CARACTERIZACIÓN GEOMORFOLÓGICA

Los parámetros más importantes para el estudio de la caracterización geomorfológica e hidrológica en las cuencas, se pueden subdividir entre parámetros de forma, relieve y red hidrográfica. Estos interactúan entre sí tanto espacial como temporalmente, cumpliendo así un papel esencial en la respuesta hidrológica de la cuenca y viceversa.

Las características de una cuenca dependen de los tipos de suelos, la cubierta vegetal, la geología, los usos del suelo, etc. Estas características influyen de manera decisiva en la respuesta hidrológica de la cuenca.

3.1.2.1 PARÁMETROS DE FORMA DE LA CUENCA

3.1.2.1.1 ÁREA DE LA CUENCA

Se define el área de la cuenca como la superficie, en proyección horizontal, delimitada por la divisoria de aguas. Según Ven To Chow (1993), se puede clasificar las cuencas según su área, tal como lo indica la Tabla 4.

Tabla 4 Clasificación de cuencas según área

ld	Área de cuenca	Descripción
1	< 25	Muy Pequeña
2	25 a 250	Pequeña
3	250 a 500	Intermedia-Pequeña
4	500 a 2500	Intermedia-Grande
5	2500 a 5000	Grande
6	5000 <	Muy Grande

Nota: El Tamaño de cuenca es medido en Km2. Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

La cuenca del proyecto es parte de la cabecera de la cuenca Caplina, en adelante solo la llamaremos cuenca Caplina, la cual tiene un área de 718.57 km² y se clasifica como una cuenca Intermedia-Grande.

3.1.2.1.2 PERÍMETRO DE LA CUENCA

Se refiere al borde de la forma de la cuenca proyectada en un plano horizontal, de forma muy irregular, se obtiene después de delimitar la cuenca (Máximo Villón, 2002). Para el caso de la cuenca Caplina es de 190.98 km.

3.1.2.1.3 LONGITUD DEL CAUCE PRINCIPAL

Es la longitud mayor que recorre el río, desde la cabecera de la cuenca, siguiendo todos los cambios de dirección o sinuosidades, hasta un punto fijo de interés, el cual podría ser una estación

de aforo o desembocadura, expresado en unidades de longitud (Km). Este parámetro está fuertemente ligado al tiempo de concentración de la cuenca que, es el tiempo que demora una gota de lluvia en recorrer por el curso principal desde la parte más alta hasta el punto de desembocadura, esto significa, que a menor recorrido tendrá mayor incidencia a crecientes. A continuación, se muestra los rangos de longitud de cauce.

Tabla 5 Clasificación por longitud de cauce principal

ld	Rangos de longitud	Descripción
1	0 – 50	Corto
2	50 – 100	Mediano
3	100 <	Largo

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

La cuenca Caplina, la longitud de cauce principal es de 70.28 km, considerado como cauce mediano.

3.1.2.1.4 LONGITUD AXIAL

Es la distancia que se mide desde la desembocadura de la cuenca hasta el punto más alejado de la misma. Este índice nos indica que tan alargada es la cuenca. Para el caso de la cuenca del río Caplina, la longitud axial es 54.88 km.

El parámetro de la longitud axial y el ancho promedio definirán la forma de la cuenca.

3.1.2.1.5 ANCHO PROMEDIO DE LA CUENCA

Es la relación entre el área de la cuenca y la longitud del cauce principal, cuya expresión está dada por:

= -

Donde:

: Ancho promedio de la cuenca (Km).

: Área de la cuenca (Km2).

Longitud del cauce principal (Km).

El ancho medio de la cuenca Caplina es de 10.22 Km.

3.1.2.1.6 COEFICIENTE DE COMPACIDAD

Es la relación que existe entre el perímetro de la cuenca y el perímetro de una circunferencia de área igual a la de la cuenca.

Donde:

: Coeficiente de compacidad.

: Perímetro de la cuenca, en Km.

: Área de la cuenca, en Km2.

Cuanto más irregular sea la cuenca mayor será su coeficiente de compacidad, un coeficiente mínimo igual a la unidad corresponde a una cuenca circular, cuando este número tiende a la unidad hay mayor tendencia a aumentar el caudal.

A continuación, se muestra los valores del coeficiente de compacidad y formas típicas:

Tabla 6 Clasificación por Coeficiente de compacidad

Сс	Forma
1 - 1.25	Redonda
1.25 - 1.5	Ovalada redonda
1.5 - 1.7	Rectangular oblonga
> 1.7	Alargada

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

El coeficiente de compacidad de la cuenca Caplina es de 2.01 lo que indica que es una cuenca alargada, esto indica que la cuenca esta mínimamente expuesta a crecientes.

3.1.2.1.7 FACTOR DE FORMA

Es el cociente entre la superficie de la cuenca y el cuadrado de su longitud máxima, medida desde la salida de la cuenca hasta la divisoria de aguas en la cabecera de la cuenca, siguiendo con una línea recta el cauce principal.

Donde:

FF: Factor de forma.

: Ancho medio de la cuenca, en Km.

: Área de la cuenca, en Km2.

: Longitud axila de la cuenca, en Km.

A continuación, se muestra el rango de valores de FF.

Tabla 7 Clasificación por Factor de Forma

FF	Clase
<= 0.30	Buena respuesta a crecientes
> 0.30	Regular respuesta a crecientes

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

El factor de forma determinado para la cuenca Caplina es de 0.24, esto indica que la cuenca estaría menos sujeta a crecientes continuas.

3.1.2.1.8 RECTÁNGULO EQUIVALENTE

El rectángulo equivalente es una transformación geométrica, que permite representar a la cuenca de su forma heterogénea, con la forma de un rectángulo, que tiene la misma área y perímetro (y por lo tanto el mismo índice de compacidad o índice de Gravelius), igual distribución, igual distribución de alturas (y por lo tanto igual a la curva hipsométrica) e igual a la distribución de terreno en cuanto a sus condiciones de cobertura. En este rectángulo las curvas de nivel se convierten en rectas paralelas al lado menor, siendo estos lados la primera y última curvas de nivel.

Si "l" y "L" son dimensiones del rectángulo equivalente, se cumple:

Área : =

Perímetro : = 2(+)

Índice de Gravelius : = 0.282 / -

Sustituyendo : $2 - \frac{-}{0.54} + = 0$

Aplicando la ecuación de segundo grado, resulta.

$$= \frac{-}{1.128} [1 + 1 - (\frac{1.128}{})^{2}]$$

$$= \frac{-}{1.128}[1 - 1 - (\frac{1.128}{})^{2}]$$

Donde:

: Longitud del lado mayor del rectángulo.

: Longitud del lado menor del rectángulo.

: Índice de Gravelius.

: Área de la cuenca.

Las áreas parciales se calculan según dividiendo el área entre curvas entre el lado menor del rectángulo. La diferencia entre las curvas de nivel dividido entre la longitud mayor del rectángulo equivalente nos indica un valor promedio de la pendiente de la cuenca.

La utilidad de calcular el rectángulo equivalente, es comparar la influencia de las características de la cuenca sobre la escorrentía. Su característica más importante es que tiene igual distribución de alturas que la curva hipsométrica original de la cuenca. La longitud mayor y menor de la cuenca Caplina es de 87.25 km y 8.24 km respectivamente.

3.1.2.1.9 RADIO DE CIRCULARIDAD

Relaciona el área de la cuenca y la del círculo que posee una circunferencia de longitud igual al perímetro de la cuenca. Su valor es 1 para una cuenca circular y 0.785 para una cuenca cuadrada.

 $=\frac{4}{2}$

Donde:

: Perímetro de la cuenca.

: Área de la cuenca.

La cuenca del río Caplina presenta un factor de circularidad igual a 0.25, podemos considerarla de escasa circularidad, esto quiere decir que no intensifica las crecientes del río y confirma la forma alargada de la cuenca.

3.1.2.1.10 ALTITUD MEDIA

A partir de los valores de las curvas de nivel del área de la cuenca se procedió a calcular la altitud media de la cuenca.

Donde:

: Elevación media de la cuenca (m.s.n.m.).

: Cota media del área i, delimitada por 2 curvas de nivel (m.s.n.m.).

: Área entre curvas de nivel en Km2.

: Área de la cuenca en Km2.

Considerando la siguiente relación:

Tabla 8 Clasificación por Altitud Media

Elevación media (msnm)	Clase
0 – 1000	Baja
1000 – 2000	Mediana
> 2000	Alta

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Finalmente se tiene la altitud media de la cuenca Caplina equivalente a 3348.27 m.s.n.m., considerada en cuencas del Perú, como una altitud de clase alta.

3.1.2.1.11 ALTITUD DE FRECUENCIA MEDIA

Corresponde a la altitud ubicada en la abscisa media de la curva de frecuencias de altitudes, en ella, el 50% del área de la cuenca, está situado por encima de esa altitud y el 50% por debajo de ella. Para la cuenca Caplina la altitud de frecuencia media es de 3435.92 m.s.n.m.

3.1.2.1.12 ALTITUD MAS FRECUENTE

Se refiere a la altitud predominante con mayor porcentaje del área de la cuenca. Para eso analizamos los polígonos de frecuencia; de esto tenemos que la altitud con mayor porcentaje de área se encuentra en el intervalo de las cotas de *4600 a 4800 m.s.n.m.*

3.1.2.1.13 PENDIENTE MEDIA DE LA CUENCA

Es uno de los parámetros más importantes debido a la relación con el comportamiento hidráulico de la red de drenaje, lo que influye en las magnitudes de las crecidas de los ríos. Se determina de la siguiente manera:

= -

Donde:

: Pendiente media de la cuenca.

: Desnivel total (Cota en la parte más alta – cota en la parte más baja) en Km.

: Lado mayor del rectángulo equivalente en Km.

Para determinar la clase de pendiente de la cuenca se tiene:

Tabla 9 Clasificación por Pendiente media de la Cuenca

Pendiente de la cuenca (%)	Clase
1 – 15	Accidentado
15 – 30	Fuertemente accidentado
30 - 50	Escarpado
> 50	Muy escarpado

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Para la cuenca Caplina se tiene por lo anterior descrito una pendiente media de 6%, hoy en día el análisis de rásters de elevación nos permite tener una mejor precisión, calculando por este método tenemos una pendiente de 42%, siendo este último cálculo más representativo.

3.1.2.1.14 COEFICIENTE DE MASIVIDAD (CM)

Es la relación entre la elevación media y el área de la cuenca.

= -

Donde:

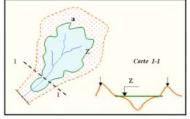
E : Elevación media de la cuenca (Km).

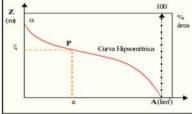
A: Área de la cuenca (km2).

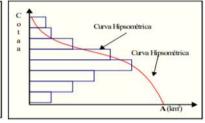
El coeficiente de masividad de la cuenca Caplina es de 0.0048. Este índice nos define la superficie de escurrimiento de la cuenca. Es decir, a mayor índice mayor es la superficie de escurrimiento de la cuenca.

3.1.2.2 PARÁMETROS DE RELIEVE DE LA CUENCA

El estudio de estos parámetros es más importante quede los de forma debido a que influyen más en la escorrentía o respuesta hidrológica de la cuenca. La pendiente es la principal variable puesto que a mayor pendiente habrá un menor tiempo de concentración de las aguas en la red de drenaje y afluentes del curso principal. Asimismo, se determina la relación área – elevación que nos mostrará la preminencia de las pendientes a lo largo de toda la cuenca.


3.1.2.2.1 CURVA HIPSOMETRICA


En el plano de delimitación de la cuenca que contenga las curvas de nivel, consideramos una curva de nivel cualesquiera cuya cota sea "Z". Calculamos el área que se encuentra sobre esta curva y el límite de la cuenca; entonces estaremos obteniendo la superficie "a" en cuya proyección horizontal de los terrenos de la cuenca situados a una altitud superior a "Z". cada valor de "Z" le corresponderá un valor de "a"; en otras palabras, "Z" está en función de "a", con lo que se puede escribir Z = f(a).


La curva representativa de "Z" en función de "a" es la curva hipsométrica, que por sus características será constantemente decreciente.

Esta curva se construye poniendo las áreas en el eje de las abscisas y las altitudes en el eje de ordenadas tal como se muestra.

Figura 6 Curva hipsométrica

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Esta figura puede explotarse en forma de frecuencias si se hace el razonamiento siguiente: sea un punto "P" sobre la curva hipsométrica al que le corresponde las coordenadas (a, z).

Dividiendo "a" (área sobre la cota z) entre "A" (área total de la cuenca) obtenemos el porcentaje de área sobre la cota "Z", lo que permite representar la frecuencia de áreas.

Para ordenar el trazo de la curva se puede utilizar el formato que se presenta; las columnas 1 en ordenadas y 2 en abscisas permitirán graficar el polígono de frecuencias altimétricas.

Los rectángulos representados, tienen longitudes proporcionales a la fracción de la cuenca comprendida entre las cotas consideradas.

1 2 3 5 4 % de área entre Cota Área sobre cota Z Área entre cotas Área acumulada cotas al área total Km2 Km2 m.s.n.m. =área total de la Punto más bajo cuenca 100. 0 _ 1 1 1 _ 100. 2 2

Tabla 10 Curva hipsométrica

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

-1 -

Para la cuenca Caplina la curva hipsométrica nos indica una curva del tipo B, una cuenca en fase de equilibrio, además de esta curva calculamos previamente la altitud de frecuencia media, como podemos ver en la Tabla 11.

3.1.2.2.2 POLIGONO DE FRECUENCIAS

TOTALES

= 0

Punto más alto

Es similar a la curva hipsométrica ya que representa gráficamente a la relación existente entre la altitud y el área correspondiente a dicha altitud con respecto al área total, sin embargo, varía ligeramente, resaltándose en esta cuál es la altitud predominante o frecuente en la cuenca a través de un gráfico de barras.

Para la cuenca Caplina la altitud predominante o frecuente está en el rango de 4600 a 4800 msnm, que representa un porcentaje del 7.5% del área total de la cuenca ver Tabla 11.

-1_

100

0

100.

0

3.1.2.3 PARAMETROS DE LA RED HIDROGRAFICA

Estos indicadores corresponden al sistema de drenaje natural de la cuenca, ya sean permanentes o temporales, por el que fluyen las aguas de los escurrimientos superficiales, hipodérmicos y subterráneos. La red hidrográfica es de los factores más importantes al momento de caracterizar un área, pues podemos obtener información en lo que concierne a la roca madre y a los materiales del suelo, a la morfología y a la cantidad de agua que circula. Esto dependerá del grado de bifurcación del sistema de drenaje de la cuenca, mientras más corrientes tributarias presenta más rápida será la respuesta de la cuenca frente a una tormenta.

3.1.2.3.1 TIPO DE CORRIENTE

La clasificación de los tipos de corriente de acuerdo al flujo en el cauce del río puede ser: ríos perennes, que contienen agua permanentemente todo el año; ríos efímeros, son ríos que contienen agua solo cuando llueve, después se secan; y en ríos intermitentes son los que generalmente tienen aguas en épocas de lluvia y se secan en épocas de estiaje.

La cuenca Caplina presenta ríos de los dos tipos, ubicándose la mayoría de los perennes en los valles de la parte alta o cabecera de la cuenca y los efímeros en las quebradas o ríos pequeños a lo largo de toda la cuenca.

3.1.2.3.2 ORDEN DE CORRIENTES

Un cauce puede ser tributaria de otra mayor y así sucesivamente de manera que por esta razón se les puede asignar un orden de importancia dentro de la cuenca; una forma muy utilizada para establecer el orden de las corrientes es teniendo en cuenta su grado de bifurcación.

 $\begin{array}{c|c}
1 & 1 \\
2 & 1 \\
1 & 3 \\
1 & 3
\end{array}$

Figura 7 Orden de Corrientes

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Para la cuenca Caplina, el orden de los ríos es 5.

3.1.2.3.3 FRECUENCIA DE DENSIDAD DE RIOS (DR)

Este parámetro indica el número de ríos por unidad de superficie de la cuenca. Se encuentra al dividir el número total ríos entre el área total de la cuenca (A).

= —

Donde:

Número de ríos de la cuenca.

A: Área de la cuenca (Km2).

3.1.2.3.4 EXTENSION MEDIA DEL ESCURRIMIENTO SUPERFICIAL (E)

Es la relación entre el área de la cuenca y la longitud total de la red hídrica de la misma cuenca. También se puede definir como la distancia promedio en línea recta que el agua precipitada tendría que recorrer para llegar al lecho de un curso de agua. Se calcula de la siguiente manera:

= —

Donde:

A: Área de la cuenca (Km2).

LT: Longitud total de ríos de la cuenca (km).

Para la cuenca Caplina, la extensión media del escurrimiento superficial es de 1.24 km2/km.

3.1.2.3.5 DENSIDAD DE DRENAJE (Dd)

La densidad de drenaje se determina dividiendo la sumatoria del largo total de los cursos de agua, de una unidad hidrográfica, y la superficie de la misma. Es decir, representa cuantos kilómetros de curso río existe por cada unidad de superficie.

= -

Donde:

Dd: Densidad de drenaje (Km/Km2).

LT: Longitud total de ríos de la cuenca (Km).

A: Área de la cuenca (Km2).

La densidad de drenaje de la cuenca Caplina es de 0.81 km/km2, esto según Monsalve S. G. (1999) quien da los valores de 0.5 para cuencas de drenaje pobre y 3.5 para cuencas con drenaje extraordinariamente bien drenadas; la cuenca tendría un drenaje pobre y moderadamente propenso a crecientes.

3.1.2.3.6 PENDIENTE MEDIA DEL RIO PRINCIPAL(SM)

Este parámetro según Taylor y Schwarz es la relación entre la diferencia de alturas y la longitud de curso principal. Esto es importante pues la velocidad de la escorrentía superficial depende de la pendiente de sus cauces fluviales; así a mayor pendiente habrá mayor velocidad de escurrimiento.

$$=\frac{(-)}{1000}$$

Donde:

Sm: Pendiente media del cauce principal (m/m).

Longitud del cauce principal (km).

HM, Hm: Altura máxima y mínima del lecho del río principal.

La pendiente media del río principal de la cuenca Caplina según Taylor Schwarz es de 0.06 m/m, hoy en día gracias al análisis de rásters de elevación podemos precisar con mayor exactitud la pendiente de un cauce, siendo esta de 0.10 m/m.

3.1.2.3.7 TIEMPO DE CONCENTRACION (TC)

Este parámetro se refiere al tiempo que tarda el agua en su recorrido entre dos puntos determinados, los cuales son: el extremo superior de la cuenca y el punto donde se mide el flujo. Para el cálculo de tiempo de concentración existente numerosas fórmulas empíricas, para el presente se han utilizado las siguientes fórmulas:

TEMEZ

$$= 0.3 \quad \left(\frac{0.75}{0.25}\right)$$

HATHAWAY

$$= \frac{0.606 \quad (0.2)^{0.467}}{0.234}$$

BRANSBY WILLIAMS

$$= \frac{14.6}{60}$$
 -0.1 -0.2

US. CORP. ING.

$$0.76$$
 = $0.3 - 0.19$

Donde:

Tc : Tiempo de concentración (hr).

Longitud del curso principal (km).

S : Pendiente media del curso principal (m/m).

A: Área de la cuenca (km2).

El tiempo de concentración de la cuenca Caplina es de 4.93 horas.

Finalmente resumimos los parámetros morfométricos de la cuenca Caplina en la Tabla 11.

Tabla 11 Curva Hipsométrica y Frecuencia de Altitudes – Cuenca del Proyecto Caplina

N°	ALTITUD	RANGOS DE ALTITUD	AREA PARCIAL km2	AREA ACUMULADA km2	FRECUENCIA DE ALTITUD PARCIAL	FRECUENCIA DE ALTITUD ACUMULADA	% DE AREA ACUMULAD QUE QUED
0	984		0	0	0.0%	0.0%	100.0%
1	1000	984 - 1000	0.17	0.17	0.0%	0.0%	100.0%
2	1200	1000 - 1200	8.62	8.79	1.2%	1.2%	98.8%
3	1400	1200 - 1400	17.53	26.32	2.4%	3.7%	96.3%
4	1600	1400 - 1600	19.81	46.14	2.8%	6.4%	93.6%
5	1800	1600 - 1800	27.18	73.31	3.8%	10.2%	89.8%
6	2000	1800 - 2000	29.05	102.37	4.0%	14.2%	85.8%
7	2200	2000 - 2200	33.03	135.40	4.6%	18.8%	81.2%
8	2400	2200 - 2400	32.72	168.12	4.6%	23.4%	76.6%
9	2600	2400 - 2600	37.73	205.85	5.3%	28.6%	71.4%
10	2800	2600 - 2800	37.76	243.61	5.3%	33.9%	66.1%
11	3000	2800 - 3000	35.08	278.70	4.9%	38.8%	61.2%
12	3200	3000 - 3200	33.47	312.17	4.7%	43.4%	56.6%
13	3400	3200 - 3400	39.00	351.17	5.4%	48.9%	51.1%
14	3600	3400 - 3600	45.21	396.38	6.3%	55.2%	44.8%
15	3800	3600 - 3800	45.71	442.08	6.4%	61.5%	38.5%
16	4000	3800 - 4000	44.00	486.08	6.1%	67.6%	32.4%
17	4200	4000 - 4200	38.18	524.26	5.3%	73.0%	27.0%
18	4400	4200 - 4400	37.05	561.31	5.2%	78.1%	21.9%
19	4600	4400 - 4600	40.46	601.77	5.6%	83.7%	16.3%
20	4800	4600 - 4800	53.58	655.34	7.5%	91.2%	8.8%
21	5000	4800 - 5000	35.15	690.49	4.9%	96.1%	3.9%
22	5200	5000 - 5200	15.86	706.35	2.2%	98.3%	1.7%
23	5400	5200 - 5400	8.86	715.21	1.2%	99.5%	0.5%
24	5600	5400 - 5600	2.89	718.10	0.4%	99.9%	0.1%
24	5786	5600 - 5786	0.47	718.57	0.1%	100.0%	0.0%
	ТОТ	'AL	718.57		ALTITUI	D MEDIA	3435.92

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Tabla 12 Tiempo de Concentración

			TIEMPO DE	CONCENTR	ACIÓN (Hr)		
Sub Cuencas	Temez	Giandotti	Bransby y Williams Clark		Valencia y Zuluaga	Passini	Promedio
W520	5.01	1.90	5.44	11.61	3.12	3.78	5.14
W580	7.14	2.33	8.32	14.73	3.55	6.05	7.02
W600	1.26	0.60	1.27	1.33	1.03	0.23	0.95
W610	2.26	0.94	2.38	3.18	1.59	0.72	1.85
W620	0.61	0.37	0.58	0.47 0.62		0.06	0.45
W640	3.22	1.44	3.39	5.97 2.29		1.61	2.99
W660	3.82	1.41	4.22	6.24	2.27	1.86	3.30
W670	4.99	1.77	5.68	8.69	2.73	3.01	4.48
W700	3.06	1.24	3.34	4.47	1.95	1.21	2.55
W710	3.96	1.66	4.39	6.65	2.47	2.10	3.54
W720	2.39	0.83	2.67	2.41	1.36	0.59	1.71
W730	4.70	1.64	5.53	6.37	2.37	2.27	3.81
W740	3.80	1.63	4.37	4.86	2.19	1.63	3.08
W750	3.44	1.23	4.00	3.77	1.80	1.16	2.57
W760	1.88	1.09	1.96	2.32	1.54	0.53	1.55
W770	2.51	1.34	2.86	2.38	1.63	0.70	1.90
W780	3.80	1.79	4.65	3.43	1.98	1.31	2.83

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Tabla 13 Parámetros Morfométricos de la Cuenca Caplina

PAR	ÁMETROS MORFOMÉTRICOS	SIMBOLOGÍA	UNIDADES	CUENCA CAPLINA (CABECERA)
CODIGO PFAFSTETT	ER			
SUPERFICIE O AREA		А	Km2	718.57
PERIMETRO		Р	Km	190.98
LONGITUD PRINCIPA	L DEL RIO	Ls	Km	70.28
LONGITUD AXIAL		La	Km	54.88
	ANCHO PROMEDIO	Ap	Km	10.22
FORMA DE LA	COEFICIENTE DE COMPACIDAD	Сс	-	2.01
CUENCA	Definición e interpretación	-	-	Alargada
	FACTOR DE FORMA	FF	-	0.24

GERENCIA DE INFRAESTRUCTURA SUB GERENCIA DE ESTUDIOS

PARÁ	ÁMETROS MORFOMÉTRICOS	SIMBOLOGÍA	UNIDADES	CUENCA CAPLINA (CABECERA)
	Definición e interpretación	-	-	Alargada
	RECTÁNGULO EQUIVALENTE	L	Km	87.25
	RECTANGOLO EQUIVALENTE	I	Km	8.24
	RADIO DE CIRCULARIDAD	Rc	-	0.25
	Definición e interpretación	-	-	Alargada
	ALTITUD DE FRECUENCIA MEDIA	-	m.s.n.m.	3435.92
	ALTITUD MAS FRECUENTE	-	m.s.n.m.	4600 a 4800
	PENDIENTE MEDIA DE LA CUENCA	Sc	m/m	0.06
CARACTERÍSTICAS DEL RELIEVE	PENDIENTE MEDIA DE LA CUENCA - RASTER	Sc	m/m	0.42
DEL RELIEVE	COFIENTE DE MASIVIDAD	Cm	Km/Km2	0.0048
	ALTITUD MÁXIMA	НМ	m.s.n.m.	5786
	ALTITUD MÍMINA	Hm	m.s.n.m.	984
	VARIACIÓN DE LA ALTITUD	HM - Hm	m.s.n.m.	4802
	NÚMERO DE ORDEN DE CORRIENTES	I	5	
	NÚMERO DE RÍOS DE LA CUENCA	N	-	549
	LONGITUD TOTAL DE RÍOS DE LA CUENCA	LT	km	579.44
	FRECUENCIA DE DENSIDAD DE RÍOS	Fr	-	0.76
CARACTERÍSTICAS DE LA RED DE	EXTENSIÓN MEDIA DEL ESCURRIMIENTO SUPERFICIAL	E	Km2/Km	1.24
DRENAJE	DENSIDAD DE DRENAJE	Dd	Km/Km2	0.806
	PENDIENTE MEDIA DEL CAUCE PRINCIPAL	S	m/m	0.0683
	PENDIENTE MEDIA DEL CAUCE PRINCIPAL - RASTER	S	m/m	0.1000
	TIEMPO DE CONCENTRACIÓN	tc	hr	4.93

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

3.2 PROCESAMIENTO INFORMACIÓN PLUVIOMÉTRICA

3.2.1 **GENERALIDADES**

En el presente capítulo se describen las principales variables de la hidrología superficial: la precipitación es de vital importancia para la determinación de la oferta hídrica superficial, de la cual se abastecen diversos usos del agua, ya se para usos domésticos, agricultura, minería, generación de energía eléctrica, entre otros.

3.2.2 RED ESTACIONES

La selección de las estaciones cercanas a la ubicación de la cuenca Caplina es realizada a partir del website del Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) (https://www.senamhi.gob.pe/?&p=estaciones) y a partir de la delimitación de la cuenca Caplina.

Las estaciones seleccionadas son Paucarani, Talabaya, Palca y Calientes, las cuales se encuentran en la jurisdicción de la Dirección Zonal 7 del SENAMHI. Ver coordenadas de ubicación en sistema de coordenadas geográficas y datum WGS84 en Tabla 14 y su ubicación en la Figura 3.

Tabla 14 Relación de Estaciones Seleccionadas para el Análisis de la Precipitación

N°	ESTACION	CUENCA	ESTE	NORTE	ALTITUD	PERIODO DE REGISTRO	AÑOS DE REGISTRO	FUENTE
1	PAUCARANI	CAPLINA	417169	69 8061320 4625 1970-2021 46		SENAMHI - TACNA		
2	TALABAYA	CAPLINA	395273	8059045	3409	1966-2021	56	SENAMHI - TACNA
3	PALCA	CAPLINA	398386	8034122	3023	1965-2021	50	SENAMHI - TACNA
4	CALIENTES	CAPLINA	378968	8022275	1200	1965-2021	57	SENAMHI – TACNA

Nota: Datum WGS84. Las estaciones meteorológicas son convencionales. Fuente SENAMHI.

3.2.3 GENERACION DE PRECIPITACIONES EN EL PUNTO DE INTERES

El método del polígono de Thiessen provee una buena estimación si las estaciones pluviométricas están distribuidas uniformemente dentro de la cuenca de interés.

Este método se puede utilizar para una distribución no uniforme de estaciones pluviométricas, provee resultados más correctos con un área de cuenca aproximadamente plana, pues no considera influencias orográficas. Para nuestra cuenca y sub cuencas de interés, asignamos un peso a su área de influencia proporcional (ver Tabla 3) como se muestra en el siguiente cuadro.

Tabla 15 Precipitaciones Máximas en las Sub Cuencas

Sub Cuenca	Área	Periodos de Reto						etorno (años)			
Sub Guerica	(km2)	10	30	35	50	70	100	140	175	500	1000
W520	139.79	30.30	36.85	37.75	39.78	41.68	43.67	45.55	46.80	52.65	56.55
W580	179.25	29.40	34.36	35.03	36.58	38.03	39.58	41.07	42.07	46.95	50.40
W600	4.9	18.76	24.05	24.85	26.75	28.63	30.72	32.82	34.25	41.71	47.34
W610	19.26	20.67	26.19	27.01	28.93	30.83	32.90	34.96	36.37	43.57	48.92

Cub Cuanas	Área	Periodos de Retorno (años)									
Sub Cuenca	(km2)	10	30	35	50	70	100	140	175	500	1000
W620	0.91	18.76	24.05	24.85	26.75	28.63	30.72	32.82	34.25	41.71	47.34
W640	45.28	18.76	24.05	24.85	26.75	28.63	30.72	32.82	34.25	41.71	47.34
W660	50.74	18.76	24.05	24.85	26.75	28.63	30.72	32.82	34.25	41.71	47.34
W670	79.23	18.76	24.05	24.85	26.75	28.63	30.72	32.82	34.25	41.71	47.34
W700	28.54	18.76	24.05	24.85	26.75	28.63	30.72	32.82	34.25	41.71	47.34
W710	47.35	13.19	17.83	18.56	20.30	22.04	24.02	26.02	27.41	34.82	40.62
W720	12.03	18.76	24.05	24.85	26.75	28.63	30.72	32.82	34.25	41.71	47.34
W730	43.62	13.92	18.64	19.38	21.14	22.91	24.90	26.91	28.30	35.73	41.50
W740	23.97	9.63	13.85	14.53	16.17	17.83	19.74	21.67	23.03	30.42	36.33
W750	19.72	12.37	16.91	17.63	19.34	21.07	23.04	25.02	26.40	33.81	39.63
W760	7.84	9.63	9.63	9.63	9.63	9.63	9.63	9.63	9.63	9.63	9.63
W770	6.22	9.63	9.63	9.63	9.63	9.63	9.63	9.63	9.63	9.63	9.63
W780	9.92	9.63	9.63	9.63	9.63	9.63	9.63	9.63	9.63	9.63	9.63

3.2.3.1 **ANALISIS ESTADISTICOS DE LOS DATOS**

3.2.3.1.1 **DETECCION DE OURLIERS (DATOS DUDOSOS)**

Según expresa la Resolución Jefatural 332-2016-ANA, que la determinación de los caudales máximos se debe realizar con información estadística de por lo menos 20 años, y que no se deberán considerar valores de los caudales máximos por efecto de eventos extraordinarios.

Al analizar los datos de un evento de lluvia es frecuente encontrar puntos que se separen en forma más o menos sensibles de la línea media de frecuencia. El método del Water Resources Council (1981) recomienda la realización de ajustes de datos dudosas y/o extraordinarios.

Los datos dudosos son puntos de la información que se alejan significativamente de la tendencia de la información restante. La inclusión o eliminación de estos datos puede afectar significativamente la magnitud de los parámetros estadísticos cálculos para la información, especialmente en muestras pequeñas.

Los procedimientos para tratar los datos dudosos requieren un criterio que involucra consideraciones matemáticas e hidrológicas. De acuerdo con el Water Resources Council (1981) si la asimetría de la estación es mayor que +0.4 se considerar primero las pruebas para detectar datos dudosos altos; si la asimetría de la estación es menor que -0.4 primera se consideran pruebas para detectar datos dudosos bajos. Cuando la asimetría de la estación se encuentre entre ± 0.4 deben aplicarse pruebas para detectar datos dudosos altos y bajos antes de eliminar cualquier dato dudoso del conjunto.

La siguiente ecuación puede utilizarse para detectar datos dudosos altos y bajos:

= +

Donde:

Banda superior de los logaritmos de los valores de caudales o precipitaciones.

Banda inferior de los logaritmos de los valores de caudales o precipitaciones.

Media aritmética de los logaritmos de los valores caudales o precipitaciones.

: Coeficiente que depende del tamaño de la muestra caudales o precipitaciones.

Desviación estándar de los logaritmos de los valores caudales o precipitaciones.

Si los logaritmos de los valores en una muestra son mayores que , entonces se consideran como datos dudosos altos. Si existe información disponible que indica que un dato dudoso alto es el máximo sobre un periodo extendido, el dato dudoso es excluido del análisis.

Si no hay disponibilidad de información histórica útil para comparar con los datos dudosos altos, entonces estos deben ser retenidos como parte del registro sistemático. Los valores de dados en la Tabla 16, se usan en pruebas para detectar datos dudosos en el nivel de 10% de significancia en información normalmente distribuida.

Tabla 16 Valores de Kn para la prueba de los datos dudosos

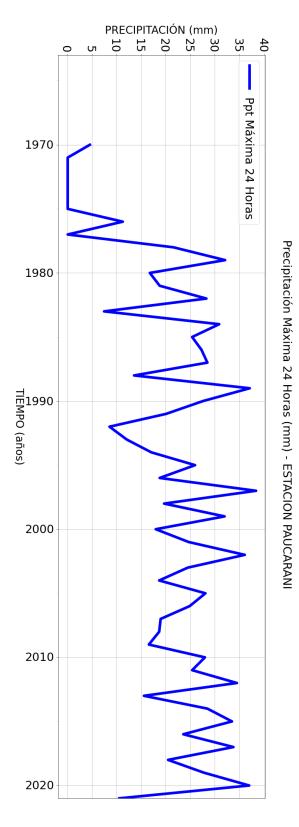
Tamaños de la muestra		Tamaños de la muestra		Tamaños de la muestra		Tamaños de la muestra	
10	2.036	24	2.467	38	2.661	60	2.837
11	2.088	25	2.486	39	2.671	65	2.866
12	2.134	26	2.502	40	2.682	70	2.893
13	2.175	27	2.519	41	2.692	75	2.917
14	2.213	28	2.534	42	2.700	80	2.940
15	2.247	29	2.549	43	2.710	85	2.961
16	2.279	30	2.563	44	2.719	90	2.981
17	2.309	31	2.577	45	2.727	95	3.000
18	2.335	32	2.591	46	2.736	100	3.017
19	2.361	33	2.604	47	2.744	110	3.049

Tamaños de la muestra		Tamaños de la muestra		Tamaños de la muestra		Tamaños de la muestra	
20	2.385	34	2.616	48	2.753	120	3.078
21	2.408	35	2.628	49	2.760	130	3.104
22	2.429	36	2.639	50	2.768	140	3.129
23	2.448	37	2.650	55	2.804		

Como puede observarse en los siguientes cuadros, al aplicarse el método Water Resources Council (1981) se identifica el rango de valores confiables de las estaciones seleccionadas, por lo que al revisar la data de las estaciones ha sido necesario retirar valores atípicos que puede afectar significativamente el análisis estadístico.

Tabla 17 Precipitaciones Máximas Anuales – Estaciones seleccionadas

Año	Paucarani	Talabaya	Palca	Calientes
1965	S/D	S/D	12.2	0.0
1966	S/D	15.3	2.1	0.0
1967	S/D	16.8	5	0.0
1968	S/D	12.3	S/D	0.2
1969	S/D	13.9	S/D	0.0
1970	4.5	8.4	S/D	2
1971	S/D	12.3	7	0.0
1972	S/D	20.5	22	10
1973	S/D	18.6	S/D	4.2
1974	S/D	17	3.9	10
1975	S/D	17	9	4
1976	11.2	20	8.6	5
1977	S/D	20.7	18.1	3
1978	21.5	46.9	9	2.5
1979	32	13.2	12.3	2
1980	16.7	10	5.2	0.0
1981	18.7	12.2	15.9	4
1982	28.2	10.5	9.8	5
1983	7.4	7	6.3	5
1984	30.8	19	10.3	5.2
1985	25.3	13.1	10.6	7.4
1986	27.2	15.2	9	9.8
1987	28.4	22	3.8	0.0
1988	13.5	11	7.5	2
1989	37	14.5	4.6	0.0
1990	27.5	27	9.2	3
1991	20	10	11.5	2.7
1992	8.5	10.8	16.8	2.5
1993	12	18.1	13	4



Año	Paucarani	Talabaya	Palca	Calientes
1994	17	11.2	11.3	5
1995	25.9	15.2	8	9.2
1996	18.7	9	2.5	4
1997	38.3	17.2	14	5.1
1998	19.6	16	8	3
1999	31.9	61.5	8.8	5.2
2000	17.9	19.4	8.6	5.5
2001	24.6	27.5	14.3	5.5
2002	36	27.4	12.1	4.9
2003	24.4	18.4	8	3.8
2004	18.6	23.3	13.9	2.7
2005	28	20.9	11.8	2
2006	24.8	28.5	8.4	3
2007	18.9	19.9	10.5	2.3
2008	18.6	26.3	14.7	6
2009	16.5	26.6	9.2	3.2
2010	27.9	13.6	6	1.0
2011	25.3	28.4	16.5	7.3
2012	34.4	27.2	25.5	9.7
2013	15.5	18.4	14.2	2.3
2014	28.4	14.4	5.3	0.9
2015	33.4	18.7	9.6	2.8
2016	23.5	27.9	9	4.3
2017	33.7	25.1	S/D	3.5
2018	20.4	19.8	S/D	1.7
2019	27.7	35.4	S/D	12
2020	36.9	27.1	21.9	15.6
2021	10.5	16.5	9.8	0

Tabla 18 Precipitación Máxima 24 horas – Estación Paucarani

N°	AÑO	P24 (mm)	log(P24)
1	1970	4.5	0.6532
2	1976	11.2	1.0492
3	1978	21.5	1.3324
4	1979	32.0	1.5051
5	1980	16.7	1.2227
6	1981	18.7	1.2718
7	1982	28.2	1.4502
8	1983	7.4	0.8692
9	1984	30.8	1.4886
10	1985	25.3	1.4031
11	1986	27.2	1.4346
12	1987	28.4	1.4533
13	1988	13.5	1.1303
14	1989	37.0	1.5682
15	1990	27.5	1.4393
16	1991	20.0	1.3010
17	1992	8.5	0.9294
18	1993	12.0	1.0792
19	1994	17.0	1.2304
20	1995	25.9	1.4133
21	1996	18.7	1.2718
22	1997	38.3	1.5832
23	1998	19.6	1.2923
24	1999	31.9	1.5038
25	2000	17.9	1.2529
26	2001	24.6	1.3909
27	2002	36.0	1.5563
28	2003	24.4	1.3874
29	2004	18.6	1.2695
30	2005	28.0	1.4472
31	2006	24.8	1.3945
32	2007	18.9	1.2765
33	2008	18.6	1.2695
34	2009	16.5	1.2175
35	2010	27.9	1.4456
36	2011	25.3	1.4031
37	2012	34.4	1.5366
38	2013	15.5	1.1903
39	2014	28.4	1.4533
40	2015	33.4	1.5237
41	2016	23.5	1.3711
42	2017	33.7	1.5276
43	2018	20.4	1.3096
44	2019	27.7	1.4425
45	2020	36.9	1.5670
46	2021	10.5	1.0212

Tabla 19 Detección de Outliers – Estación Paucarani

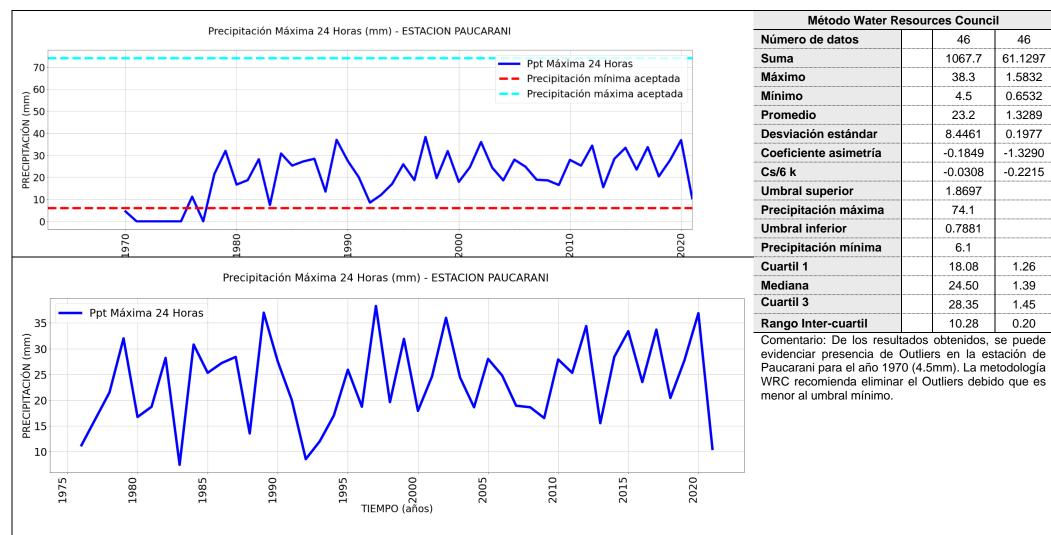
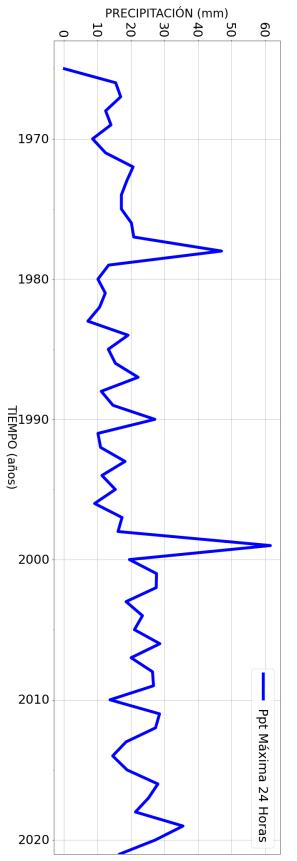
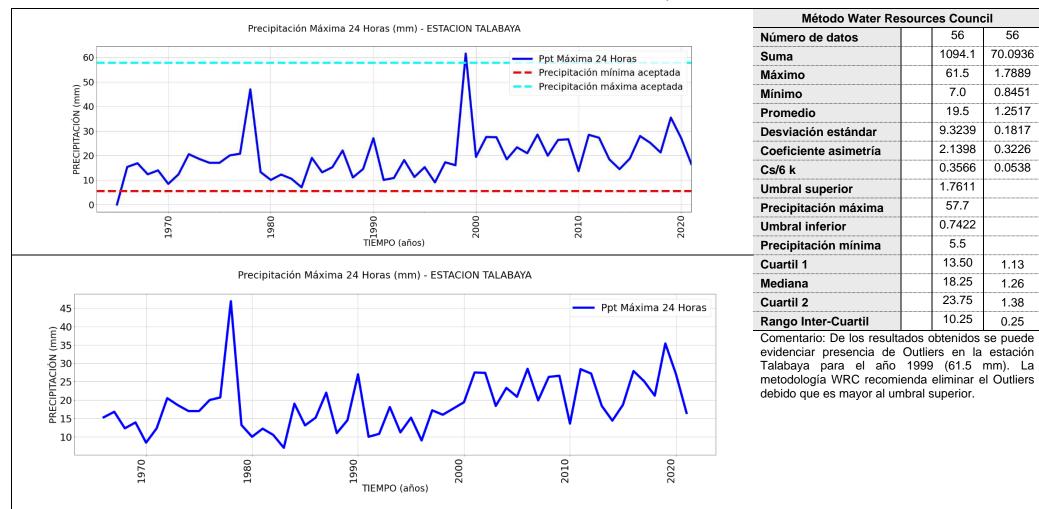
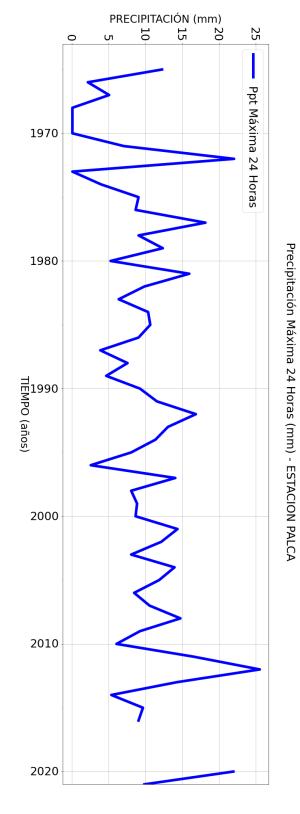



Tabla 20 Precipitación Máxima 24 horas – Estación Talabaya

N° AÑO P24 (mm) log(P24) 1 1966 15.3 1.1847 2 1967 16.8 1.2253 3 1968 12.3 1.0899 4 1969 13.9 1.1430 5 1970 8.4 0.9243 6 1971 12.3 1.0899 7 1972 20.5 1.3118 8 1973 18.6 1.2695 9 1974 17.0 1.2304 10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451
2 1967 16.8 1.2253 3 1968 12.3 1.0899 4 1969 13.9 1.1430 5 1970 8.4 0.9243 6 1971 12.3 1.0899 7 1972 20.5 1.3118 8 1973 18.6 1.2695 9 1974 17.0 1.2304 10 1975 17.0 1.2304 10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788
3 1968 12.3 1.0899 4 1969 13.9 1.1430 5 1970 8.4 0.9243 6 1971 12.3 1.0899 7 1972 20.5 1.3118 8 1973 18.6 1.2695 9 1974 17.0 1.2304 10 1975 17.0 1.2304 10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 <td< td=""></td<>
4 1969 13.9 1.1430 5 1970 8.4 0.9243 6 1971 12.3 1.0899 7 1972 20.5 1.3118 8 1973 18.6 1.2695 9 1974 17.0 1.2304 10 1975 17.0 1.2304 10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 <t< td=""></t<>
5 1970 8.4 0.9243 6 1971 12.3 1.0899 7 1972 20.5 1.3118 8 1973 18.6 1.2695 9 1974 17.0 1.2304 10 1975 17.0 1.2304 10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 <
6 1971 12.3 1.0899 7 1972 20.5 1.3118 8 1973 18.6 1.2695 9 1974 17.0 1.2304 10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614
7 1972 20.5 1.3118 8 1973 18.6 1.2695 9 1974 17.0 1.2304 10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314
8 1973 18.6 1.2695 9 1974 17.0 1.2304 10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000
9 1974 17.0 1.2304 10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334
10 1975 17.0 1.2304 11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577
11 1976 20.0 1.3010 12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492
12 1977 20.7 1.3160 13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818
13 1978 46.9 1.6712 14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542
14 1979 13.2 1.1206 15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355
15 1980 10.0 1.0000 16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041
16 1981 12.2 1.0864 17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889
17 1982 10.5 1.0212 18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878
18 1983 7.0 0.8451 19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393
19 1984 19.0 1.2788 20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378
20 1985 13.1 1.1173 21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648
21 1986 15.2 1.1818 22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674
22 1987 22.0 1.3424 23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201
23 1988 11.0 1.0414 24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548
24 1989 14.5 1.1614 25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989
25 1990 27.0 1.4314 26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200
26 1991 10.0 1.0000 27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249
27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335
27 1992 10.8 1.0334 28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335
28 1993 18.1 1.2577 29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533
29 1994 11.2 1.0492 30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346
30 1995 15.2 1.1818 31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648
31 1996 9.0 0.9542 32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584
32 1997 17.2 1.2355 33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
33 1998 16.0 1.2041 34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
34 1999 61.5 1.7889 35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
35 2000 19.4 1.2878 36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
36 2001 27.5 1.4393 37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
37 2002 27.4 1.4378 38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
38 2003 18.4 1.2648 39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
39 2004 23.3 1.3674 40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
40 2005 20.9 1.3201 41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
41 2006 28.5 1.4548 42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
42 2007 19.9 1.2989 43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
43 2008 26.3 1.4200 44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
44 2009 26.6 1.4249 45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
45 2010 13.6 1.1335 46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
46 2011 28.4 1.4533 47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
47 2012 27.2 1.4346 48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
48 2013 18.4 1.2648 49 2014 14.4 1.1584 50 2015 18.7 1.2718
49 2014 14.4 1.1584 50 2015 18.7 1.2718
50 2015 18.7 1.2718
51 2016 279 14456
52 2017 25.1 1.3997
53 2018 19.8 1.2967
54 2019 35.4 1.5490
55 2020 27.1 1.4330
20 2020 27.11 1.7000

Precipitación Máxima 24 Horas (mm) - ESTACION TALABAYA

Tabla 21 Detección de Outliers - Estación Talabaya

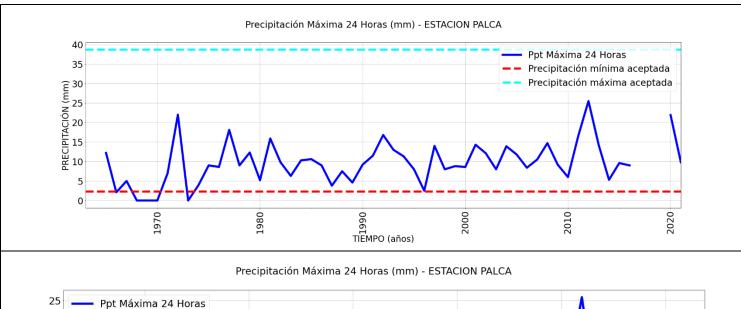
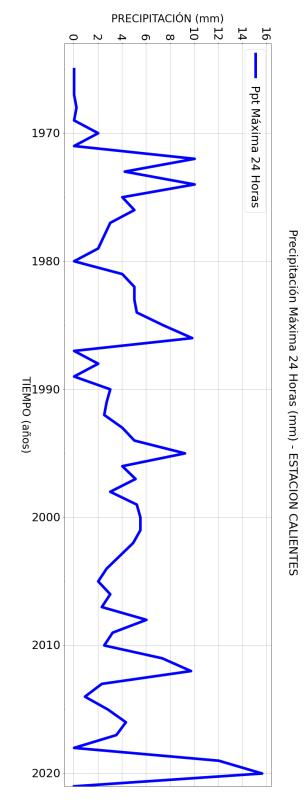


Tabla 22 Precipitación Máxima 24 horas – Estación Palca

N°	AÑO	P24 (mm)	log(P24)
1	1965	12.2	1.0864
2	1966	2.1	0.3222
3	1967	5.0	0.6990
4	1971	7.0	0.8451
5	1972	22.0	1.3424
6	1974	3.9	0.5911
7	1975	9.0	0.9542
8	1976	8.6	0.9345
9	1977	18.1	1.2577
10	1978	9.0	0.9542
11	1979	12.3	1.0899
12	1980	5.2	0.7160
13	1981	15.9	1.2014
14	1982	9.8	0.9912
15	1983	6.3	0.7993
16	1984	10.3	1.0128
17	1985	10.6	1.0253
18	1986	9.0	0.9542
19	1987	3.8	0.5798
20	1988	7.5	0.8751
21	1989	4.6	0.6628
22	1990	9.2	0.9638
23	1991	11.5	1.0607
24	1992	16.8	1.2253
25	1993	13.0	1.1139
26	1994	11.3	1.0531
27	1995	8.0	0.9031
28	1996	2.5	0.3979
29	1997	14.0	1.1461
30	1998	8.0	0.9031
31	1999	8.8	0.9445
32	2000	8.6	0.9345
33	2001	14.3	1.1553
34	2002	12.1	1.0828
35	2003	8.0	0.9031
36	2004	13.9	1.1430
37	2005	11.8	1.0719
38	2006	8.4	0.9243
39	2007	10.5	1.0212
40	2008	14.7	1.1673
41	2009	9.2	0.9638
42	2010	6.0	0.7782
43	2011	16.5	1.2175
44	2012	25.5	1.4065
45	2013	14.2	1.1523
46	2014	5.3	0.7243
47	2015	9.6	0.9823
48	2016	9.0	0.9542
49	2020	21.9	1.3404
50	2021	9.8	0.9912

Tabla 23 Detección Outliers – Estación Palca

25 — Ppt Máxima 24 Hor	200				
Ppt Maxima 24 Hor	as			Λ	
20				$ \Lambda$	
20 15 10	۸ .	A		/ \	
15	/\	\wedge	A A A	/	
	//// -		$\Lambda / \Lambda /$	\ /\ /	
10	7 11 7	1./	IW V	V \/	1
5	V V	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		V	V
		V .	1		
	1980	1990	2000	2010	2020


Método Water Resources Council					
Número de datos		50	50		
Suma		524.6	48.5203		
Máximo		25.5	1.4065		
Mínimo		2.1	0.3222		
Promedio		10.5	0.9704		
Desviación estándar		4.9229	0.2231		
Coeficiente asimetría		0.9054	-0.7222		
Cs/6 k		0.1509	-0.1204		
Umbral superior		1.5878			
Precipitación máxima		38.7			
Umbral inferior		0.3530			
Precipitación mínima		2.3			
Cuartil 1		8.00	0.90		
Mediana		9.40	0.97		
Cuartil 2		12.83	1.11		
Rango Inter-Cuartil		4.83	0.20		
Comentario: De los resul	ltados	ohtenidos	se nuede		

Comentario: De los resultados obtenidos se puede evidenciar presencia de Outliers en la estación Palca para el año 1966 (2.1 mm). La metodología WRC recomienda eliminar el Outliers debido que es menor al umbral mínimo.

Tabla 24 Precipitación Máxima 24 horas – Estación Calientes

N°	AÑO	P24 (mm)	log(P24)
1	1965	0.0	0.0000
2	1966	0.0	0.0000
3	1967	0.0	0.0000
4	1968	0.2	-0.6990
5	1969	0.0	0.0000
6	1970	2.0	0.3010
7	1971	0.0	0.0000
8	1972	10.0	1.0000
9	1973	4.2	0.6232
10	1974	10.0	1.0000
11	1975	4.0	0.6021
12	1976	5.0	0.6990
13	1977	3.0	0.4771
14	1978	2.5	0.3979
15	1979	2.0	0.3010
16	1980	0.0	0.0000
17	1981	4.0	0.6021
18	1982	5.0	0.6990
19	1983	5.0	0.6990
20	1984	5.2	0.7160
21	1985	7.4	0.8692
22	1986	9.8	0.9912
23	1987	0.0	0.0000
24	1988	2.0	0.3010
25	1989	0.0	0.0000
26	1990	3.0	0.4771
27	1991	2.7	0.4314
28	1992	2.5	0.3979
29	1993	4.0	0.6021
30	1994	5.0	0.6990
31	1995	9.2	0.9638
32	1996	4.0	0.6021
33	1997		
34	1998	5.1 3.0	0.7076
		5.2	0.4771
35	1999		0.7160
36	2000	5.5	0.7404
37	2001	5.5	0.7404
38	2002	4.9	0.6902
39	2003	3.8	0.5798
40	2004	2.7	0.4314
41	2005	2.0	0.3010
42	2006	3.0	0.4771
43	2007	2.3	0.3617
44	2008	6.0	0.7782
45	2009	3.2	0.5051
46	2010	1.0	0.0000
47	2011	7.3	0.8633
48	2012	9.7	0.9868
49	2013	2.3	0.3617
50	2014	0.9	-0.0458
51	2015	2.8	0.4472
52	2016	4.3	0.6335
53	2017	3.5	0.5441
54	2018	1.7	0.2304
55	2019	12	1.0792
56	2020	15.6	1.1931
57	2020	0	0.0000
	ZUZ I	U	0.0000

Proyecto:

Tabla 25 Detección Outliers – Estación Calientes

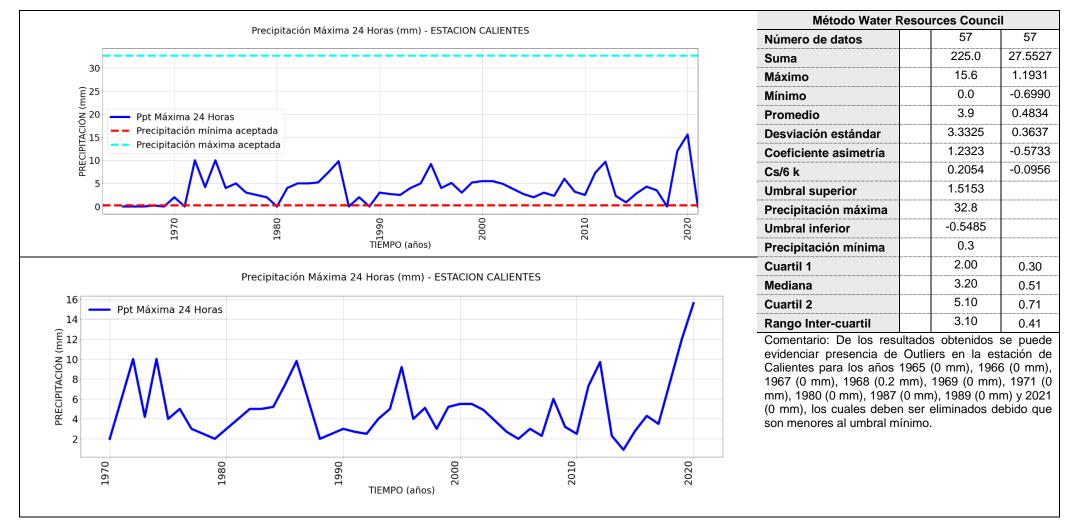


Tabla 26 Precipitaciones Máximas Anuales corregido por valores atípicos - Estaciones seleccionadas

FECHA	Paucarani	Talabaya	Palca	Calientes
1965	S/D	S/D	12.2	0.0
1966	S/D	15.3	2.1	0.0
1967	S/D	16.8	5	0.0
1968	S/D	12.3	S/D	0.2
1969	S/D	13.9	S/D	0.0
1970	4.5	8.4	S/D	2
1971	S/D	12.3	7	0.0
1972	S/D	20.5	22	10
1973	S/D	18.6	S/D	4.2
1974	S/D	17	3.9	10
1975	S/D	17	9	4
1976	11.2	20	8.6	5
1977	S/D	20.7	18.1	3
1978	21.5	46.9	9	2.5
1979	32	13.2	12.3	2
1980	16.7	10	5.2	0.0
1981	18.7	12.2	15.9	4
1982	28.2	10.5	9.8	5
1983	7.4	7	6.3	5
1984	30.8	7 19	10.3	5.2
1985	25.3	13.1	10.6	7.4
1986	27.2	15.2	9	9.8
1987	28.4	22	3.8	0.0
1988	13.5	11	7.5	2
1989	37	14.5	7.5 4.6	0.0
1990	27.5	27	9.2	3
1991	20	10	11.5	2.7
1992	8.5	10.8	16.8	2.5
1993	12	18.1	13	4
1994	17	11.2	11.3	5
1995	25.9	15.2	8	9.2
1996	18.7	9	2.5	4
1997	38.3	9 17.2	14	5.1
1998	19.6	16	8	3
1999	31.9	16 61.5	8.8	5.2
2000	17.9	19.4	8.6	5.5
2001	24.6	27.5	14.3	5.5
2002	36	27.4	12.1	4.9
2003	24.4	18.4	8	3.8
2004	18.6	23.3	13.9	2.7
2005	28	20.9	11.8	2.7
2005	24.8	28.5	8.4	3
2007	18.9	19.9	10.5	2.3
2007	18.6	26.3	14.7	<u> </u>
2008	16.5	26.6	9.2	3.2
2010	27.9	13.6	6	1.0
2010	25.3	28.4	16.5	7.3
2011	34.4	27.2	25.5	9.7
2012	15.5	18.4	14.2	2.3
2013	28.4	14.4	5.3	0.9
2014	33.4	18.7	9.6	2.8
2015	23.5	27.9	9.0	4.3
	33.7	27.9 25.1	S/D	
2017 2018	20.4			3.5
2018	20.4	19.8 35.4	S/D S/D	1.7 12
2019	36.9		21.9	15.6
2020		27.1 16.5	9.8	0
ZUZ I	10.5	16.5	5.0	U

Valores atípicos por debajo de la precipitación mínima aceptada

Valores atípicos por encima de la precipitación máxima aceptada

Los valores atípicos no han sido considerados en el análisis estadístico.

3.2.4 ANALISIS ESTADISTICO DE DATOS HIDROLOGICOS

3.2.4.1 ANALISIS DE LA PRECIPITACION MAXIMA 24 HORAS

En la zona de estudio existen una estación hidrométrica, la cual no cuenta con un registro de caudales máximos, sino caudales promedios diarios, además de estar casi en abandono, esto no nos permite estimar directamente los caudales, por lo cual estos serán calculados en base a la información de lluvias máximas registradas en las estaciones ubicadas en el ámbito de la zona de estudio.

Los caudales máximos serán estimados mediante modelos de precipitación-escorrentía, sobre la base de la precipitación máxima 24 horas (P24H) o precipitación máxima anual (PMA) y de las características geomorfológicas de las cuencas.

En el presente capítulo se utilizaron las estaciones pluviométricas en el ámbito de la región Tacna distribuidas dentro y aledaño al territorio, los registros comprenden datos de precipitación diaria la cual ha sido medida a las 7:00 y 19:00 horas, toda la información pluviométrica fue proporcionada por el SENAMHI. La distribución de las estaciones pluviométricas está a cargo del SENAMHI.

El periodo de análisis estará comprendido entre 1963 – 2020, además como requisito fundamental para seleccionar una estación pluviométrica en el presente estudio es que al menos contenga 20 años de registros completos para así obtener series de precipitación máxima anual (PMA) de una longitud mínima de la misma cantidad. Para ellos se extrajo mediante líneas de programación Python la precipitación máxima diaria 24 horas para cada año y para cada estación correspondiente a la época de lluvias (noviembre hasta abril).

Para el presente estudio se ha evaluado 04 Estaciones Meteorológicas en el ámbito de la región Tacna, donde se puede observar que las estaciones varían entre 1200 m.s.n.m. de la Estación Calientes, con una PMA de 15.6 mm, hasta la elevación de 4625 m.s.n.m. de la Estación Paucarani con una PMA de 38.3 mm.

Tabla 27 Resumen de la Precipitación Máxima en 24 horas de la Región Tacna

N°	ESTACION	ALTITUD	PERIODO DE REGISTRO	NUMERO DE AÑOS DE REGISTRO	PptMáx24Horas (mm)	FUENTE
1	PAUCARANI	4625	1970-2021	46	38.3	SENAMHI - TACNA
2	TALABAYA	3409	1966-2021	56	46.9	SENAMHI - TACNA
3	PALCA	3023	1965-2021	50	25.5	SENAMHI - TACNA
4	CALIENTES	1200	1965-2021	57	15.6	SENAMHI – TACNA

Para objetivos de visualizar la variación de la precipitación máxima 24 horas de las 04 estaciones meteorológicas, la trazamos en un mismo plano. Ver Figura 8

Talabaya - 3409 msnm Palca - 3023 msnm PRECIPITACIÓN MÁXIMA 24 HORAS (mm) Calientes - 1200 msnm 50 40 2000 TIEMPO (años) 60 50 40 30 20 10 0 Paucarani - 4625 msnm Talabaya - 3409 msnm Palca - 3023 msnm Calientes - 1200 msnm

Figura 8 Precipitación Máxima de Estaciones seleccionadas

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

3.2.4.1.1 ANALISIS DE FRECUENCIA DE PRECIPITACION MAXIMA EN 24 HORAS

En la teoría estadística e hidrológica, existen muchas distribuciones de frecuencia: entre ellas Exponential (EXP), Gamma (GAM), Generalised Extreme Value (GEV), Generalised Logistic (GLO), Generalised Normal (GNO), Generalised Pareto (GPA), Gumbel (GUM), Kappa (KAP), Normal (NOR), Pearson III (PE3), Wakeby (WAK) y Weibull (WEI).

Para ello se evaluó a través de líneas de códigos de Python y su librería Pandas y Matplotlib, teniendo como inputs los registros de Precipitación Máxima 24 horas.

3.2.4.1.1.1 DISTRIBUCION PEARSON TIPO III

$$() = \frac{1}{1} \left(\frac{1}{1} \right) \left[\frac{1}{1} \right]^{1}$$

Donde:

Parámetros de la función () función de gamma.

Los parámetros 1' 1' 1 se evalúan a partir de los datos de intensidades observadas (en este caso estimadas a partir de la Iluvia máxima en 24 horas), mediante el sistema de ecuaciones.

Donde:

: Media de los Datos

2 : Varianza de los datos

Coeficiente de sesgo, definido por: = $\frac{(-)^3}{3}$

La función de distribución de probabilidad es:

$$() = \frac{1}{1 \cdot (1)} \cdot 0 \cdot \frac{-(-1)}{1} \cdot (-1)^{1-1}$$

Sustituyendo

En la ecuación anterior se escribe como:

$$() = \frac{1}{()}$$

Esta última ecuación es una función de distribución de chi cuadrada con 2 $_1$ grados de libertad y también 2 = 2 , es decir:

$$() = (^{2}|) = ^{2}(2|2_{1})$$

La función chi cuadrado se encuentra en tablas estadísticas

3.2.4.1.1.2 DISTRIBUCION GUMBEL

Supóngase que se tienen N muestras, cada una de las cuales contiene "n" eventos. Si se selecciona el máximo de "x" de los "n" eventos de cada muestra, es posible demostrar que, a medida que "n" aumenta, la función de distribución de probabilidad de "x" tiende a:

Siendo:

= -

= -

F(x): Probabilidad de que se presente un valor igual o menor que x.

E : Base de los logaritmos neperianos.

: Media aritmética de la muestra.

: Desviación estándar de la muestra.

: Según el número de datos de la muestra.

Mediante las expresiones anteriores podremos calcular la frecuencia a partir del valor x, es decir: calcular con qué frecuencia (o periodo de retorno) se presentará un cierto caudal o precipitación.

Para solucionar un caso inverso (que caudal o precipitación se producirán cada n años) debemos dejar "x" en la siguiente expresión:

$$\frac{(-)}{} = - (- (()))$$

3.2.4.1.1.3 DISTRIBUCION NORMAL

Es simétrica con respecto a la media y no ha sido muy utilizada en análisis de frecuencia de avenidas, puesto que la mayoría de las series de avenidas tienen un sesgo positivo. Sin embargo, se ha encontrado apropiada para ciertas series de eventos de descarga y niveles de agua, en particular donde hay grandes almacenamientos.

$$() = \frac{1}{2} \qquad \frac{-1}{2} (\frac{-}{2})$$

La variable estandarizada está dada por:

Donde:

μ : Media de la muestra.

: Desviación estándar de la muestra.

3.2.4.1.1.4 DISTRIBUCION LOG NORMAL

Considera que los logaritmos de los caudales tienen una distribución Normal. Ha sido extensamente utilizada en los Estados Unidos y Canadá debido a su consistencia y facilidad de aplicación e interpretación.

$$() = \frac{1}{2} - \frac{1}{2} (\frac{1}{2})^2$$

La variable estandarizada está dada por:

= ---

Donde:

μ : Media de la muestra.

Desviación estándar de la muestra.

3.2.4.1.2 PRUEBA DE BONDAD DE AJUSTE

Para saber que distribución teórica se ajustó mejor a los datos de intensidades calculadas, se aplicó la prueba de bondad de ajuste Kolgomorov-Smirnov. Consiste en comparar el máximo valor absoluto de la diferencia D entre la función de distribución de probabilidad observada $_{\rm O}($) y la estimada ().

$$=$$
 $\frac{a}{0}()-()$

Con un valor crítico "K-Tabla" que depende del número de datos y del nivel de significación seleccionado.

Si < K-Tabla, se acepta la hipótesis nula.

Los valores de significación que se usan normalmente son del 10%, 5% y 1%.

El valor de , en la teoría estadística, es la probabilidad de rechazar la hipótesis nula.

Ho es la función de distribución de probabilidad es (, ...), cuando en realidad es cierta, es decir de cometer un error tipo I.

La función de distribución de probabilidad observada se calcula como:

$$_{0}($$
 $) = 1 - \frac{}{+1}$

Donde "m" es el número de orden del dato en una lista de mayor a menor y "n" es el número total de datos.

De acuerdo a estas pruebas de ajuste, todos los datos observados de las diferentes estaciones meteorológicas en el ámbito de la región Tacna, se ajustan a diferentes distribuciones como son entre ellas: Generalised Extreme Value (GEV) y Generalised Logistic (GLO), el cual resumimos en el para escoger la función probabilística está en función del K-tabla con el Ks estadístico, el cual el Ks estadístico hallado no debería ser mayor que el K-tabla, en caso superara dicho valor, este quedaría descartado.

Tabla 28 Valores K-Tabla según cantidades valores de la muestra

N				N			
4	0.352	0.381	0.417	14	0.207	0.227	0.261
5	0.315	0.337	0.405	15	0.201	0.220	0.257
6	0.294	0.319	0.364	16	0.195	0.213	0.250
7	0.276	0.300	0.348	17	0.189	0.206	0.245
8	0.261	0.285	0.331	18	0.184	0.200	0.239
9	0.249	0.271	0.311	19	0.179	0.195	0.235
10	0.239	0.258	0.294	20	0.174	0.190	0.231
11	0.230	0.249	0.284	25	0.165	0.180	0.203
12	0.223	0.242	0.275	30	0.144	0.161	0.187
13	0.214	0.234	0.268	>30	0.805/	0.886/	1.031/

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

En la Tabla 29 muestra los K-Tabla críticos para cada una de las estaciones seleccionadas para el proyecto el cual están en función a la cantidad de información de precipitación máxima diaria anual.

Tabla 29 Resultados de K-Tabla para cada estación según niveles de significancia

Estación	Paucarani	Talabaya	Palca	Calientes
.0.10	0.120	0.109	0.115	0.117
.0.05	0.132	0.119	0.127	0.129
.0.01	0.154	0.139	0.147	0.150

En la Tabla 30 muestra los valores estadísticos calculados a partir de la comparación de la función de probabilidad continua y empírica (Weibull) para cada estación y por cada función de distribución probabilística considerada

Tabla 30 Resultados de funciones probabilísticas vs estaciones seleccionadas

Estación	Pau	Paucarani		Talabaya		alca	Calientes	
Distribución Probabilística	Ks	Pvalue	Ks	Pvalue	Ks	Pvalue	Ks	Pvalue
GEV	0.068	0.999	0.093	0.968	0.122	0.832	0.089	0.992
EXP	0.205	0.282	0.130	0.725	0.184	0.346	0.089	0.992
GUM	0.159	0.595	0.093	0.968	0.122	0.832	0.133	0.790
WEI	0.068	0.999	0.074	0.998	0.122	0.832	0.089	0.992
GPA	0.114	0.924	0.074	0.998	0.143	0.665	0.089	0.992
PE3	0.068	0.999	0.074	0.998	0.122	0.832	0.089	0.992
GAM	0.136	0.778	0.074	0.998	0.122	0.832	0.133	0.790
GLO	0.091	0.990	0.093	0.968	0.102	0.950	0.089	0.992

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Para escoger la función probabilística está en función del K-tabla con el Ks estadístico, el cual el Ks estadístico hallado no debería de ser mayor al K-tabla, en caso se superará dicho valor, la función de probabilidad sería descartada.

De lo anterior, las funciones de probabilidad que mejor se ajustan a las precipitaciones máximas anuales (PMA) de la estación Paucarani son: GEV, WEI, GPA, PE3, GLO.

De igual manera, para la estación Talabaya las funciones de probabilidad que mejor se ajustan son: GEV, GUM, WEI, GPA, PE3, GAM, GLO.

Para la estación de Palca la función que mejor se ajusta es: GLO.

Para la estación de Calientes la funciones que mejor se ajustan son: GEV, EXP, WEI, GPA, PE3, GLO.

Las funciones de probabilidad seleccionadas para representar las precipitaciones máximas anuales (PMA) de las estaciones Paucarani, Talabaya, Palca y Calientes son detalladas en la Tabla 31.

Tabla 31 Prueba de Ajuste de Kolgomorov Smirnov – Funciones probabilísticas de mejor ajuste

Estación Meteorológica	Distribución Probabilística	Ks Estadístico	Probabilidad P (%)
PAUCARANI	WEI	0.068	99.99
TALABAYA	PE3	0.074	99.80
PALCA	GLO	0.102	95.00
CALIENTES	GEV	0.089	99.20

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

El resumen de los resultados estadísticos - hidrológicos de las estaciones meteorológicas analizadas se muestra en la Tabla 33 y desde la Figura 9 hasta la Figura 12.

Los cálculos y el procedimiento de elaboración y comparación de las funciones probabilísticas versus los datos de precipitación máxima anual de las estaciones seleccionadas; se adjuntan en el ANEXO Análisis de Precipitación Máxima 24 horas – Cálculos hidrológicos con Python.

Figura 9 Estación PAUCARANI – Distribución WEI

Figura 10 Estación TALABAYA – Distribución PE3

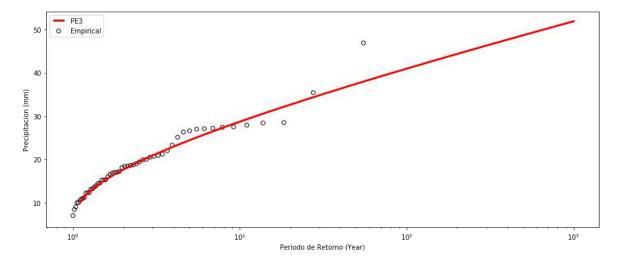


Figura 11 Estación PALCA – Distribución GLD

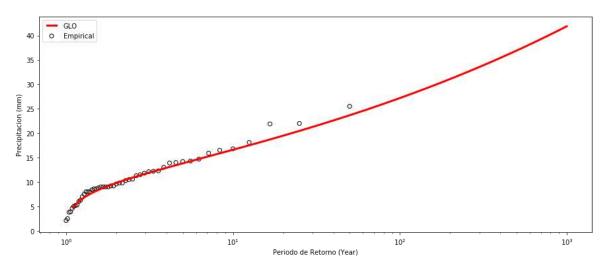
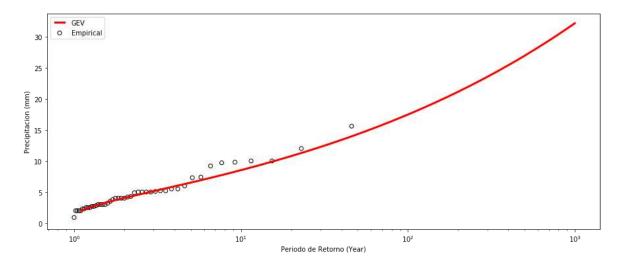



Figura 12 Estación CALIENTES – Distribución GEV

En el siguiente cuadro resumimos las precipitaciones máximas 24 horas para diferentes probabilidades de ocurrencia o periodos de retorno de las estaciones seleccionadas.

Tabla 32 Precipitaciones Máximas 24 horas para diferentes Periodos de Retorno de las Estaciones Seleccionadas

	Distribución Probabilística		Precipitación Máxima 24 horas (mm)									
Estación Meteorológica			Período de Retorno (años)									
		10	30	35	50	70	100	140	175	500	1000	
PAUCARANI	WEI	34.14	38.24	38.74	39.82	40.77	41.72	42.57	43.11	45.44	46.82	
TALABAYA	PE3	28.71	34.81	35.63	37.48	39.19	40.97	42.62	43.71	48.69	51.90	
PALCA	GLO	16.60	21.28	21.99	23.67	25.34	27.19	29.04	30.31	36.91	41.89	
CALIENTES	GEV	8.52	12.26	12.86	14.31	15.78	17.47	19.18	20.38	26.92	32.15	

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Elaboramos un cuadro resumen de las precipitaciones máximas para diferentes probabilidades de ocurrencia, para la elaboración de los hietogramas, estos datos serán mayorados por un factor de 1.13 por tener solo 2 lecturas al día, esto por recomendación de la Organización Meteorológica Mundial (OMM).

Tabla 33 Corrección de las Precipitaciones Máximas 24 horas para diferentes Periodos de Retorno de las Estaciones Seleccionadas

	Distribución Probabilística		Precipitación Máxima 24 horas (mm)									
Estación Meteorológica			Período de Retorno (años)									
g		10	30	35	50	70	100	140	175	500	1000	
PAUCARANI	WEI	38.58	43.21	43.78	45.00	46.07	47.14	48.10	48.71	51.35	52.91	
TALABAYA	PE3	32.44	39.34	40.26	42.35	44.28	46.30	48.16	49.39	55.02	58.65	
PALCA	GLO	18.76	24.05	24.85	26.75	28.63	30.72	32.82	34.25	41.71	47.34	
CALIENTES	GEV	9.63	13.85	14.53	16.17	17.83	19.74	21.67	23.03	30.42	36.33	

3.3 DETERMINACION DE PRECIPITACIONES DE DISEÑO

DETERMINACION DE LAS CURVAS I-D-F 3.3.1

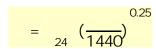
Las estaciones meteorológicas ubicadas en la zona, no cuentan con registros pluviográficos que permitan obtener las intensidades máximas. Para poder estimarlas se recurrió al principio conceptual, referente a que los valores extremos de lluvias de alta intensidad y corta duración aparecen, en el mayor de los casos, marginalmente dependientes de la localización geográfica, con base en el hecho de que estos eventos de lluvia están asociados con celdas atmosféricas las cuales tienen propiedades físicas similares en la mayor parte del mundo.

Las curvas de intensidad-duración-frecuencia, se han calculado indirectamente, mediante la siguiente relación:

Donde:

I Intensidad de Iluvia (mm/hr)

Duración de Iluvia (min)


Т Periodo de retorno (años)

K, m, n : Coeficientes característicos de la zona de estudio

Las estaciones de precipitación en la zona de estudio, no cuentan con registros pluviográficos que permitan obtener las intensidades máximas. Sin embargo, estas pueden ser calculadas a partir de las Iluvias máxima. En base al modelo de Dick y Peschke (Guevara, 1991). Este modelo permite calcular la lluvia máxima en función de la precipitación máxima en 24 horas. La expresión es la siguiente:

30/12/2021

Donde:

Pd: Precipitación total (mm)

d : duración en minutos

P24h : precipitación máxima en 24 horas (mm)

Como ejemplo tomaremos la estación Paucarani, en el cual se generaron precipitaciones máximas para diferentes periodos de retorno, posteriormente discretizando esta precipitación a lo largo de 24 horas por el modelo de Dick y Peschke; finalmente de la Tabla 34, y dividiendo la precipitación entre el tiempo, calculamos las intensidades máximas.

Tabla 34 Precipitaciones Máximas – Paucarani

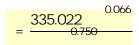
	PRECIPITACIONES MAXIMAS (mm)												
	T (min)				Perio	dos de R	etorno (y	/ears)					
T (hr)		10	30	35	50	70	100	140	175	500	1000		
		38.58	43.21	43.78	45.00	46.07	47.14	48.10	48.71	51.35	52.91		
0.08	5	9.36	10.49	10.63	10.92	11.18	11.44	11.68	11.83	12.46	12.84		
0.17	10	11.14	12.47	12.64	12.99	13.30	13.61	13.89	14.06	14.82	15.27		
0.25	15	12.32	13.80	13.99	14.38	14.72	15.06	15.37	15.56	16.40	16.90		
0.33	20	13.24	14.83	15.03	15.45	15.82	16.18	16.51	16.72	17.63	18.16		
0.42	25	14.00	15.69	15.89	16.33	16.72	17.11	17.46	17.68	18.64	19.20		
0.50	30	14.66	16.42	16.63	17.10	17.50	17.91	18.28	18.51	19.51	20.10		
0.58	35	15.23	17.06	17.28	17.77	18.19	18.61	18.99	19.23	20.27	20.89		
0.67	40	15.75	17.64	17.87	18.37	18.81	19.25	19.64	19.89	20.96	21.60		
0.75	45	16.22	18.17	18.41	18.92	19.37	19.82	20.23	20.48	21.59	22.24		
0.83	50	16.65	18.65	18.90	19.42	19.89	20.35	20.77	21.03	22.17	22.84		
0.92	55	17.05	19.10	19.35	19.89	20.37	20.84	21.27	21.54	22.70	23.39		
1.00	60	17.43	19.52	19.78	20.33	20.81	21.30	21.73	22.01	23.20	23.90		
2.00	120	20.73	23.22	23.52	24.18	24.75	25.33	25.85	26.17	27.59	28.43		

Tabla 35 Intensidades Máximas – Estación Paucarani

	INTENSIDADES MAXIMAS (mm/hr)											
					Perio	dos de R	etorno (y	rears)				
T (hr)	T (min)	10	30	35	50	70	100	140	175	500	1000	
0.08	5	112.38	125.87	127.52	131.07	134.20	137.33	140.12	141.90	149.57	154.11	
0.17	10	66.82	74.84	75.82	77.94	79.80	81.66	83.32	84.38	88.94	91.64	
0.25	15	49.30	55.22	55.94	57.50	58.87	60.24	61.47	62.25	65.62	67.61	
0.33	20	39.73	44.50	45.08	46.34	47.45	48.55	49.54	50.17	52.88	54.49	
0.42	25	33.61	37.64	38.14	39.20	40.14	41.07	41.91	42.44	44.73	46.09	
0.50	30	29.31	32.83	33.26	34.19	35.01	35.82	36.55	37.01	39.02	40.20	
0.58	35	26.11	29.25	29.63	30.46	31.18	31.91	32.56	32.97	34.76	35.81	
0.67	40	23.62	26.46	26.81	27.55	28.21	28.87	29.46	29.83	31.44	32.40	
0.75	45	21.63	24.22	24.54	25.22	25.83	26.43	26.97	27.31	28.79	29.66	
0.83	50	19.98	22.38	22.68	23.31	23.86	24.42	24.92	25.23	26.60	27.41	
0.92	55	18.61	20.84	21.11	21.70	22.22	22.74	23.20	23.49	24.76	25.52	
1.00	60	17.43	19.52	19.78	20.33	20.81	21.30	21.73	22.01	23.20	23.90	
2.00	120	10.36	11.61	11.76	12.09	12.38	12.66	12.92	13.09	13.79	14.21	

Mediante la regresión lineal múltiple se determinó los valores de los coeficientes K, m y n de la ecuación, para determinar dichas constantes se ha calculado las precipitaciones de la lluvia para diferentes periodos a través del método Dick y Peschke.

Tabla 36 Resultados de la Regresión Lineal Múltiple PMA – Estación Paucarani


Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.99991516							
Coeficiente de determinación R^2	0.99983033							
R^2 ajustado	0.99982935							
Error típico	0.00712978							
Observaciones	350							

	ANÁLISIS DE VARIANZA												
Grados de libertad Suma de cuadrados Promedio de los cuadrados F Valor crítico F													
Regresión	2	103.942521	51.9712605	1022376.79	0								
Residuos	347	0.01763932	5.0834E-05										
Total	349	103.96016											

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	2.52507333	0.001852721	1362.899889	0	2.521429354	2.52871731	2.52142935	2.52871731
Variable X 1	-0.75	0.000525702	-1426.665013	0	-0.751033962	-0.74896604	- 0.75103396	-0.74896604
Variable X 2	0.065736032	0.000678719	96.85308325	2.9383E-253	0.064401111	0.06707095	0.06440111	0.06707095

Es así que se obtuvieron las precipitaciones e intensidades para diferentes periodos de retorno y duraciones. Además, se determinó la ecuación que representa a las curvas IDF a partir de la regresión lineal múltiple, el cual se detalla a continuación:

Donde:

I : Intensidad máxima (mm/hr)

T : Periodo de retorno (años)

t : duración de la lluvia (minutos)

Tabla 37 Curva IDF – Estación Paucarani

DURACIÓN		PERÍODO DE RETORNO (años)									
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	69.31	74.50	75.26	77.05	78.77	80.64	82.44	83.66	89.64	93.82
0.33	20	41.21	44.30	44.75	45.81	46.84	47.95	49.02	49.74	53.30	55.78
0.50	30	30.41	32.68	33.02	33.80	34.56	35.38	36.17	36.70	39.32	41.16
0.67	40	24.51	26.34	26.61	27.24	27.85	28.51	29.15	29.58	31.69	33.17
0.83	50	20.73	22.28	22.51	23.04	23.56	24.12	24.66	25.02	26.81	28.06
1.00	60	18.08	19.43	19.63	20.10	20.55	21.03	21.50	21.82	23.38	24.47

DURACIÓN		PERÍODO DE RETORNO (años)									
Hr	min	10	30	35	50	70	100	140	175	500	1000
1.17	70	16.11	17.31	17.49	17.90	18.30	18.74	19.16	19.44	20.83	21.80
1.33	80	14.57	15.66	15.82	16.20	16.56	16.95	17.33	17.59	18.84	19.72
1.50	90	13.34	14.34	14.48	14.83	15.16	15.52	15.87	16.10	17.25	18.06
1.67	100	12.33	13.25	13.38	13.70	14.01	14.34	14.66	14.88	15.94	16.68
1.83	110	11.48	12.33	12.46	12.76	13.04	13.35	13.65	13.85	14.84	15.53
2.00	120	10.75	11.56	11.67	11.95	12.22	12.51	12.79	12.98	13.90	14.55

Curvas Intensidad, Duración y Frecuencia 85 Tr 10 años Tr 30 años 75 Tr 35 años Tr 50 años 65 Tr 70 años Tr 100 años Intensidad (mm/hr) -Tr 140 años Tr 175 años 35 25 15 25 40 45 60 65 70 75 80 85 90 95 100 105 110 115 120 Duración (minutos)

Figura 13 Curva IDF – Estación Paucarani

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Finalmente repetimos el procedimiento para todas las estaciones seleccionadas y para las sub cuencas del estudio, el cual resumimos en la Tabla 38 y Tabla 39

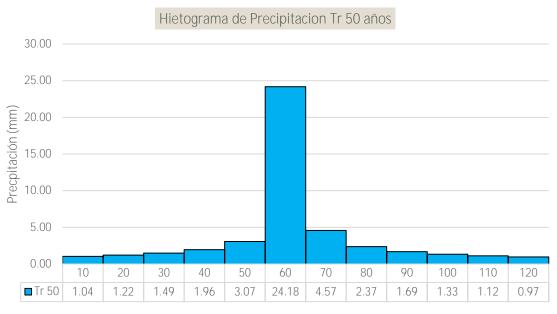
Los resultados tabulares y gráficos de las curvas IDF, resultados de regresión lineal múltiple, de cada estación seleccionada y sub cuencas del estudio, se encuentran en el ANEXO se adjunta las Curvas IDF

Tabla 38 Ecuación de Curva Intensidad, Duración y Frecuencia – Estaciones Seleccionadas

Sub Cuenca	k	n	m	Ecuación
Paucarani	335.022	0.75	0.066	$= \frac{335.022}{0.750}$
Talabaya	249.137	0.75	0.125	0.125 = 249.137 = 0.750
Palca	118.659	0.75	0.199	118.659 = \frac{0.199}{0.750}
Calientes	50.935	0.75	0.285	0.285 = 0.750

Tabla 39 Ecuación de Curva Intensidad, Duración y Frecuencia - Sub Cuencas

Sub Cuenca	k	n	m	Ecuación
W520	227.849	0.75	0.132	$= \frac{227.849}{\frac{0.750}{0.750}}$
W580	225.620	0.75	0.115	$= \frac{225.620}{\frac{0.750}{0.750}}$
W610	135.579	0.75	0.185	= 135.579 = 0.750
W710	76.022	0.75	0.242	$= \frac{76.022}{0.750}$
W730	81.385	0.75	0.235	81.385 = \frac{0.235}{0.750}
W750	70.042	0.75	0.250	$= \frac{70.042}{0.750}$
W600 W620 W640 W660 W670 W700 W720	118.659	0.75	0.199	= \frac{118.659}{0.750}
W740 W760 W770 W780	50.935	0.75	0.285	= \frac{50.935}{0.750}


3.4 GENERACION DE HIETOGRAMAS EN LAS SUBCUENCAS

Para la modelación hidrológica para los periodos de retorno de diseño de 50, 100, 175 y 500 años, necesitamos generar hietogramas para cada sub cuenca.

Por ejemplo, el hietograma para un periodo de retorno de 50 años para la estación Paucarani tiene una precipitación de diseño de 45.00 mm; la precipitación teórica de la Tabla 40 es de 23.90 mm.

Tabla 40 Bloques Alterno – Hietograma

	Precipitación TR 50 Años								
tiempo (min)	Intensidad (mm/hr)	Precipitación (mm)	Incremento de Precipitación (mm)	Hietograma (mm)	Hietograma Normalizado (mm)	Incremento de Precipitación (mm)	Precipitación Acumulada (mm)	Intensidad (mm/hr)	
10	77.05	12.84	12.84	0.55	1.04	24.18	24.18	145.06	
20	45.81	15.27	2.43	0.65	1.22	4.57	28.75	86.25	
30	33.80	16.90	1.63	0.79	1.49	3.07	31.82	63.63	
40	27.24	18.16	1.26	1.04	1.96	2.37	34.19	51.29	
50	23.04	19.20	1.04	1.63	3.07	1.96	36.15	43.38	
60	20.10	20.10	0.90	12.84	24.18	1.69	37.84	37.84	
70	17.90	20.89	0.79	2.43	4.57	1.49	39.32	33.71	
80	16.20	21.60	0.71	1.26	2.37	1.33	40.66	30.49	
90	14.83	22.24	0.65	0.90	1.69	1.22	41.87	27.92	
100	13.70	22.84	0.59	0.71	1.33	1.12	42.99	25.80	
110	12.76	23.39	0.55	0.59	1.12	1.04	44.03	24.02	
120	11.95	23.90	0.51	0.51	0.97	0.97	45.00	22.50	

mm Precipitacion por Instante Tiempo

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Se ha generado un hietograma por cada sub cuenca y para cada periodo de retorno, por lo tanto, de la Figura 14 hasta la Figura 17, tenemos 16 hietogramas de tormenta para el modelo numérico de la cuenca.

Para calibrar el modelo hidrológico simulamos la precipitación ocurrida el 08 de febrero del 2019, generando los hietogramas respectivos a partir de los datos registrados en cada estación seleccionada y analizada para el presente estudio. (Ver Figura 18)

Tabla 41 Precipitaciones registradas el 08 de febrero del 2019

Estación Meteorológica	Precipitación (mm)	Observación
PAUCARANI	23.3	Registro
TALABAYA	17.7	Registro
PALCA	20.4	Completada
CALIENTES	3.8	Registro

Figura 14 Hietograma de Precipitación – Estación Paucarani

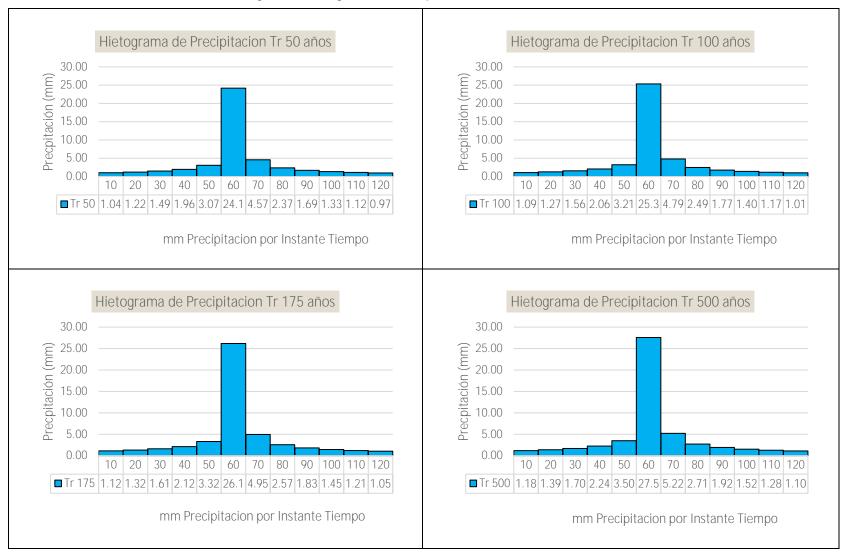


Figura 15 Hietograma de Precipitación – Estación Talabaya

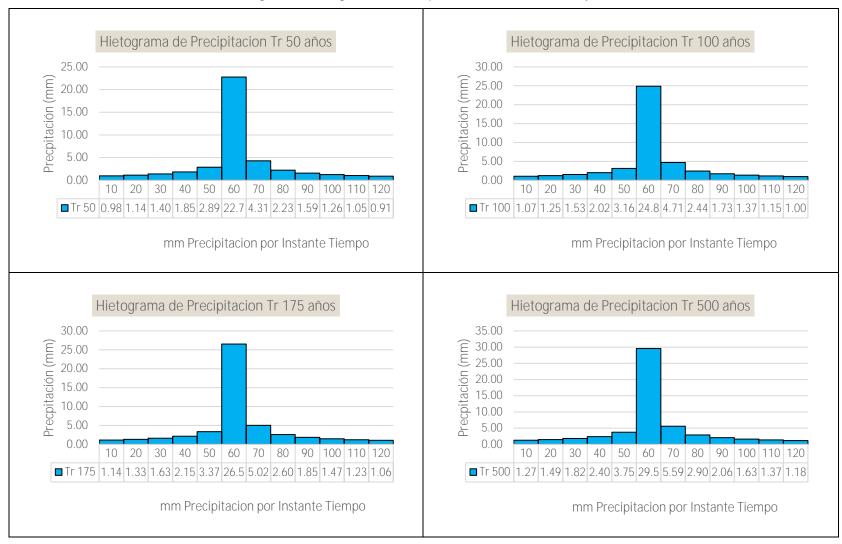


Figura 16 Hietograma de Precipitación – Estación Palca

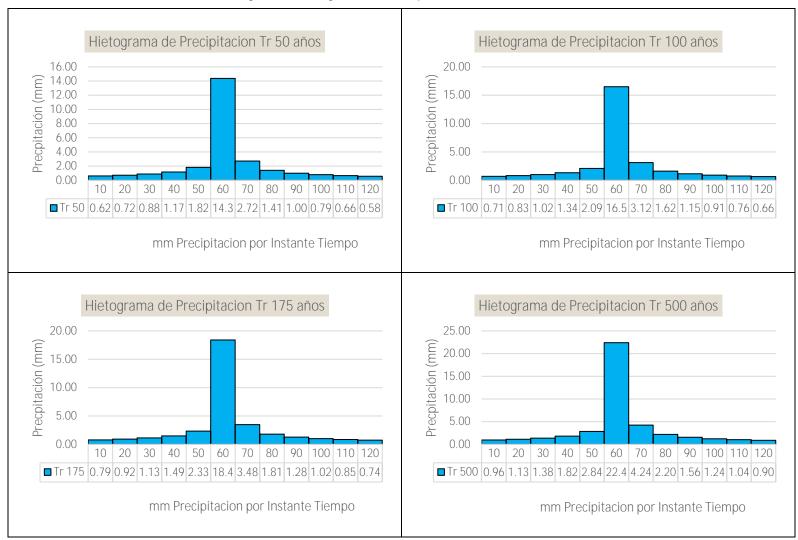


Figura 17 Hietograma de Precipitación – Calientes

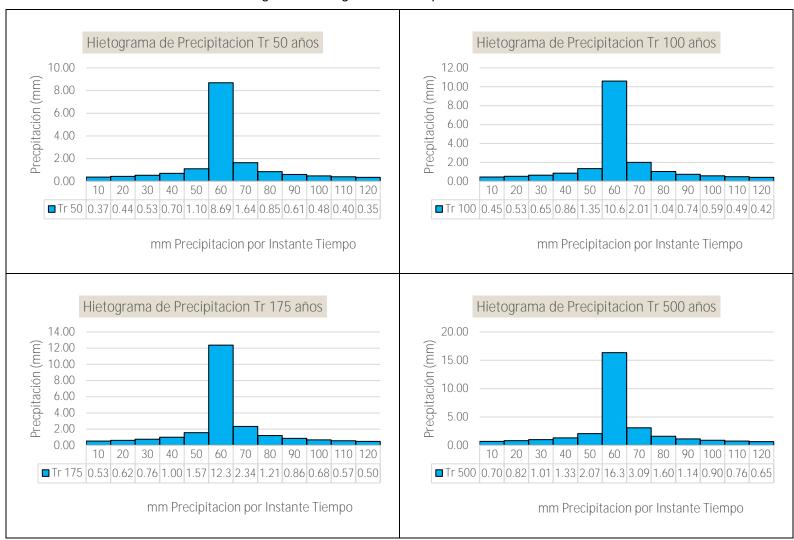
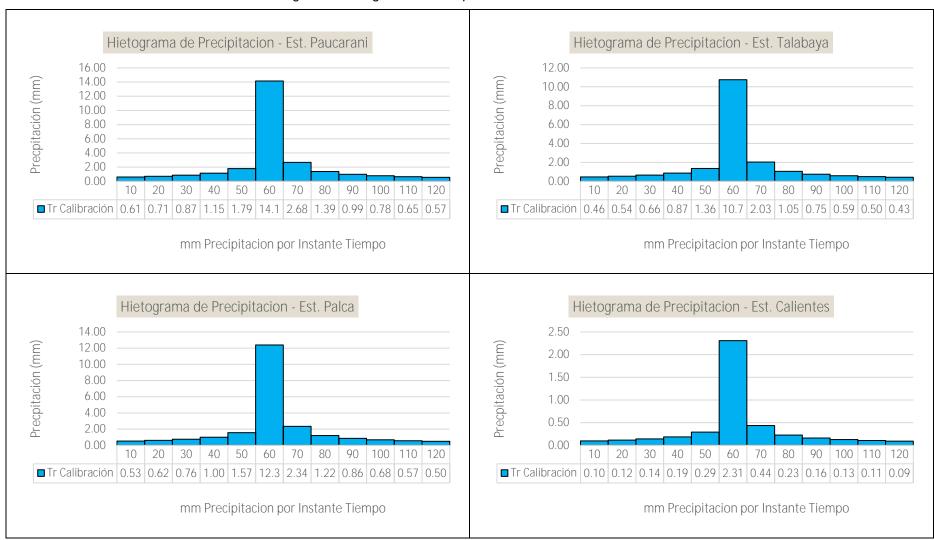
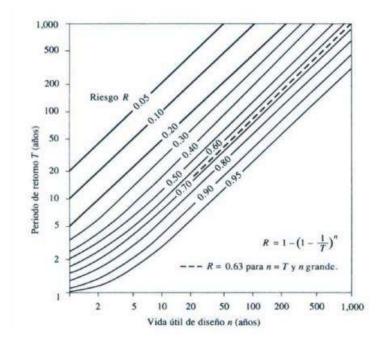



Figura 18 Hietograma de Precipitación – 08 de febrero del 2019

3.5 DESCARGAS DE DISEÑO

3.5.1 SELECCIÓN DE PREIODO DE RETORNO


3.5.1.1 MARCO TEORICO

El tiempo promedio, en años, en que el valor del caudal pico de una creciente determinada es igualado o superado una vez cada "T" años, se le denomina Período de Retorno "T". Si se supone que los eventos anuales son independientes, es posible calcular la probabilidad de falla para una vida útil de n años. Para adoptar el período de retorno a utilizar en el diseño de una obra, es necesario considerar la relación existente entre la probabilidad de excedencia de un evento, la vida útil de la estructura y el riesgo de falla admisible, dependiendo este último, de factores económicos, sociales, técnicos y otros. El criterio de riesgo es la fijación, a priori, del riesgo que se desea asumir por el caso de que la obra llegase a fallar dentro de su tiempo de vida útil, lo cual implica que no ocurra un evento de magnitud superior utilizada en el diseño durante el primer año, durante el segundo, y así sucesivamente para cada uno de los años de vida de la obra. El riesgo de falla admisible en función del período de retorno y vida útil de la obra está dado por:

$$= 1 - (1 - \frac{1}{-})$$

Si la obra tiene una vida útil de n años, la fórmula anterior permite calcular el período de retorno T, fijando el riesgo de falla admisible R, el cual es la probabilidad de ocurrencia del pico de la creciente estudiada, durante la vida útil de la obra.

Figura 19 Riesgo de por lo menos una excedencia del evento de diseño durante la vida útil

Fuente: Hidrología Aplicada - Ven Te Chow

En la siguiente tabla se presenta el valor T para varios riesgos permisible R y para la vida útil n de la obra.

Tabla 42 Valores para Periodo de Retorno T (años)

RIESGO ADMISIBLE	VIDA ÚTIL DE LAS OBRAS (n años)									
R	1	2	3	5	10	20	25	50	100	200
0.01	100	199	299	498	995	1990	2488	4975	9950	19900
0.02	50	99	149	248	495	990	1238	2475	4950	9900
0.05	20	39	59	98	195	390	488	975	1950	3900
0.10	10	19	29	48	95	190	238	475	950	1899
0.20	5	10	14	23	45	90	113	225	449	897
0.25	4	7	11	18	35	70	87	174	348	695
0.50	2	3	5	8	15	29	37	73	154	289
0.75	1.3	2	2.7	4.1	7.7	15	18	37	73	144
0.99	1	1.11	1.27	1.66	2.7	5	5.9	11	22	44

Fuente: MONSALVE, 1993.

De acuerdo a los valores presentados en el cuadro anterior se recomienda utilizar como máximo, los siguientes valores de riesgo admisible de obras de drenaje:

Tabla 43 Valores Máximos recomendados de riesgo admisible de obras de drenaje

TIPO DE OBRA	RIESGO ADMISIBLE (**) (%)
Puentes (*)	25
Alcantarillas de paso de quebradas importantes y badenes	30
Alcantarillas de paso quebradas menores y descarga de agua de cunetas	35
Drenaje de la plataforma (a nivel longitudinal)	40
Sub drenes	40
Defensas Ribereñas	25

Fuente: Manual de Hidrología, Hidráulica y Drenaje, MTC

(*) Para obtención de la luz y nivel de aguas máximas extraordinarias.

Se recomienda un periodo de retorno T de 500 años para el cálculo de socavación.

Vida Útil considerado (n)

- Puentes y Defensas ribereñas n=40 años.
- Alcantarillas de quebradas importantes n=25 años.
- Alcantarillas de quebradas menores n=15 años
- Drenaje de plataforma y Sub drenes n=15 años

Se tendrá en cuenta, la importancia y la vida útil de la obra a diseñarse, además el propietario de una obra es el que define el riesgo admisible de falla y la vida útil de las obras.

3.5.1.2 CALCULO Y SELECCIÓN DEL PERIODO DE RETORNO

Como indica y recomienda el manual del MTC, el proyectista puede definir el riesgo admisible de falla y la vida útil de la obra. En el cuadro siguiente resumimos la vida útil y riesgo para la obra de cada quebrada del proyecto.

De acuerdo a la Tabla 43 descrito previamente, para cumplir con los riesgos de falla y vida útil propuestos se obtienen los siguientes valores de periodos de retorno.

Tabla 44 Riesgo de vida útil de las Estructuras Hidráulicas del Proyecto

Objetivo	Tipo de Obra	Riesgo (%)	Vida Útil (años)	Periodo de Retorno (años)
Puntos vulnerables por inundación.	Defensas Ribereñas	25	40	140
Cálculo de socavación.	Defensas Ribereñas			500

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

De acuerdo a la Resolución Jefatural N°332-2016-ANA con fecha 28 de diciembre del 2016, siguiendo la directiva para fajas marginales, en el Título III, Capítulo I, Articulo 9 modelamiento hidráulico, ítem 9.2 indica que, para cauces colindantes a terrenos agrícolas, período de retorno de 50 años y para cauces naturales de agua colindantes a asentamiento poblacionales corresponde un periodo de retorno de 100 años.

Finalmente, resumimos en la Tabla 45 los periodos de retorno de diseño cumpliendo las directivas de la Autoridad Nacional del Agua y el Ministerio de transportes y comunicaciones.

Tabla 45 Periodos de retorno de diseño para el proyecto

Objetivo	Periodo de Retorno (años)
Delimitación de faja marginal – terrenos agrícolas	50
Delimitación de faja marginal – zona urbana	100
Puntos vulnerables por inundación.	140
Cálculo de socavación.	500

3.6 GENERACION DE MAXIMA AVENIDAS CON HEC-HMS

3.6.1 CAUALES MAXIMO METODO HIDROLOGICO CON HEC-HMS

Para el análisis de eventos de tormentas se aplicó el programa de HEC-HMS, que es un modelo hidrológico desarrollado por el Centro de Ingeniería Hidrológica (HEC), del cuerpo de ingenieros de los Estados Unidos, que simula el proceso de precipitación-escorrentía sobre la superficie de la cuenca; representando la cuenca como un sistema interconectado de componentes hidrológicos e hidráulicos. HEC-HMS dispone de las siguientes opciones para esta simulación:

- Alternativas para la determinación de abstracciones.
- Métodos agregados o lineales de transformación de la escorrentía distribuida
- Opciones de tránsito hidrológico

3.6.1.1 MARCO TEORICO

3.6.1.1.1 DETERMINACION DE ABSTRACCIONES

Las abstracciones se refieren a la cantidad de lluvia infiltrada en la tierra. HEC-HMS emplea los métodos más comunes para calcular las pérdidas o abstracciones (como el initial/constant, CN de SCS, CN gridded SCS y el Green y Ampt) y provee una opción de abatimiento de la humedad para simular los períodos de tiempo extendidos.

El método que mejor se ajusta para el presente trabajo es el SCS (Soil Conservation Service), en base a la curva número característico, calculado a partir de la cobertura vegetal y uso de suelos de la cuenca. Este número representa los coeficientes de escorrentía, así un CN=100, indica que toda la lluvia escurre, mientras que un CN=1, señala que toda la lluvia se infiltra.

Los valores de Número de Curva de las sub cuencas fueron calculadas a partir de la ponderación de los valores individuales distribuidos espacialmente según la tabla de Ven Te Chow.

En el siguiente cuadro, se muestra los valores de CN para diferente uso de la tierra, tratamiento o práctica, condición hidrológica y grupo hidrológico de suelos. Los datos fueron elaborados para una relación la=0.2S y para una condición de humedad antecedente promedio (CHA II)

Tabla 46 Numero de Curva CN – (SCS, de los EEUU, 1964)

Cobertura					Número de Curva			
Uso de la tierra	Tratamiento o Práctica	Α	В	С	D			
Descuidado, en descanso, sin cultivos	Surcos rectos		77	86	91	94		
O. Iti	Surcos rectos	Pobre	72	81	88	91		
Cultivos	Surcos rectos	Buena	67	78	85	89		

Cobertura					Número de Curva			
Uso de la tierra	Tratamiento o Práctica	Condición Hidrológica	Α	В	С	D		
	Con curvas de nivel	Pobre	70	79	84	88		
	Con curvas de nivel	Buena	65	75	82	86		
	Con curvas de nivel y terrazas	Pobre	66	74	80	82		
	Con curvas de nivel y terrazas	Buena	62	71	78	81		
	Surcos rectos	Pobre	65	76	84	88		
	Surcos rectos	Buena	63	75	83	87		
Pogueños granos	Con curvas de nivel	Pobre	63	74	82	85		
Pequeños granos	Con curvas de nivel	Buena	61	73	81	84		
	Con curvas de nivel y terrazas	Pobre	61	72	79	82		
	Con curvas de nivel y terrazas	Buena	59	70	78	81		
	Surcos rectos	Pobre	66	77	85	89		
	Surcos rectos	Buena	58	72	81	85		
Sembríos cerrados, legumbres o	Con curvas de nivel	Pobre	64	75	83	85		
sembríos en rotación	Con curvas de nivel	Buena	55	69	78	83		
	Con curvas de nivel y terrazas	Pobre	63	73	80	83		
	Con curvas de nivel y terrazas	Buena	51	67	76	80		
		Pobre	68	79	86	89		
		Regular	49	69	79	84		
Destinates a similares		Buena	39	61	74	80		
Pastizales o similares	Curvas de nivel	Pobre	47	67	81	88		
	Curvas de nivel	Regular	25	59	75	83		
	Curvas de nivel	Buena	6	35	70	79		
Pradera		Buena	30	58	74	78		
		Pobre	45	66	77	83		
Bosques		Regular	36	60	73	79		
		Buena	25	55	70	77		
Patios			59	74	82	86		
Comingo ingluyanda darasha da sé-	Cieno		72	82	87	89		
Caminos, incluyendo derecho de vía	Superficie firme		74	84	90	92		

La condición hidrológica se refiere a la capacidad de la superficie de la cuenca para favorecer o dificultar el escurrimiento directo, esto se encuentra en función de la cobertura vegetal y uso de suelos, puede aproximarse como se muestra a continuación.

Tabla 47 Condición Hidrológica

Cobertura Vegetal	Condición Hidrológica
>75% del área	Buena
Entre 50% y 75% del área	Regular
<50% del área	Pobre

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

El grupo hidrológico de suelo, define los grupos de suelos, los cuales pueden ser:

- Grupo A: (Bajo potencial de escurrimiento). Suelos que tienen altas velocidades de infiltración cuando están mojados y consisten principalmente de arenas y gravas profundas, con bueno a excesivo drenaje. Estos suelos tienen altas velocidades de transmisión del agua.
- **Grupo B:** Suelos con moderada velocidad de infiltración cuando están mojados y consisten principalmente de suelos con cantidades moderadas y texturas finas y gruesas, con drenaje medio y algo profundo. Son básicamente suelos arenosos.
- **Grupo C:** Suelos que tienen bajas velocidades de infiltración cuando están mojados, consisten principalmente de suelos que tienen un estrato que impide el flujo del agua, son suelos con texturas finas. Estos suelos tienen bajas velocidades de transmisión.
- Grupo D: (Alto potencial de escurrimiento). Suelos que tienen muy bajas velocidades de infiltración cuando están mojados y consisten principalmente de suelos arcillosos con alto potencial de hinchamiento, suelos con nivel freático alto y permanente, suelos con estratos arcillosos cerca de su superficie, o bien, suelos someros sobre horizontes impermeables. Estos suelos tienen muy bajas velocidades de transmisión de agua.

La condición o estado de humedad tiene en cuenta los antecedentes de humedad de la cuenca; determinado por la lluvia total en el período de cinco días anteriores de la tormenta.

El SCS usa tres intervalos de condición de humedad antecedente (CHA):

- **CHA-I**, es el límite inferior de humedad o límite superior de S, hay un mínimo potencial de escurrimiento. Los suelos de la cuenca están lo suficiente secos para permitir el arado o cultivos.
- CHA-II, es el promedio para el cual el SCS elaboró el cuadro de condición de humedad.
- **CHA-III,** es el límite superior de humedad o límite inferior de S. hay una máxima potencia de escurrimiento. La cuenca está prácticamente saturada por lluvias anteriores.

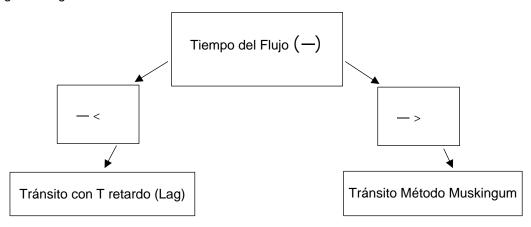
El SCS proporciona el siguiente cuadro, para estimar CHA, considerando el antecedente de 5 días de lluvia, el cual es simplemente la suma de la lluvia de los 5 días anteriores al día considerado.

Tabla 48 Condición de Humedad Antecedentes Propuesto por SC

Condición de Humedad	Precipitación acumulada de los 5 días previos al Evento en consideración (cm)			
Antecedente (CHA)	Estación Seca	Estación de Crecimiento		
I (seca)	Menor de 1.3	Menor de 3.5		
II (Media)	1.3 a 2.5	3.5 a 5		
III (Húmeda)	Más de 2.5	Más de 5		

Respecto al número de curva, es importante precisar que no existe valores para las características de la cuenca existentes en el Perú; vale decir, no se ha efectuado investigaciones en este rubro; por lo tanto, se ha tomado como referencia la Tabla 46 y Tabla 47 donde se ha ajustado o calibrado en función a las características de cobertura vegetal y uso de suelos en la cuenca interés.

3.6.1.1.2 TRANSFORMACION DE ESCORRENTIA (RUNOFF TRANSFORMATIO)


Este módulo convierte el exceso de precipitación en la subcuenca en escorrentía directa en la salida. Tiene disponible los métodos agregados y distribuidos. En el método agregado, la escorrentía es determinada usando hidrogramas unitarios tales como: Clark, Snyder o SCS o métodos de onda cinemática.

En la cuenca estudiada se emplea el método del Hidrograma Unitario de Snyder, es un hidrograma que toma en cuenta las características del cauce y de la cuenca, como parámetros de cálculo de hidrograma, lo cual hace que sea más representativa.

3.6.1.1.3 TRANSITO EN CAUCES (CHANNEL ROUTING)

El tránsito en cauces permite conocer el movimiento del flujo en el tramo del cauce desde las salidas de la subcuenca hasta la salida de cuenca. Las opciones para el tránsito son: Muskimgum, el Pulso Modificado, la Onda Cinemática y el método de Muskingum-Cunge.

La selección de la técnica a emplearse se basa en el tiempo del flujo de cauce y el delta del tiempo empleado para la simulación. Si el tiempo de traslado del flujo en el cauce es menor al delta del tiempo analizado () el tránsito en el canal se desarrolla con el método de desfase puro (pure lag), en caso contrario el tránsito se desarrolla con el método Muskingum, como se muestra en la siguiente figura:

En la simulación se han empleado un igual a 30 min, debido a que este es menor al valor más pequeño del tiempo de concentración, requisito necesario para la estabilidad del modelo, Ls/Vs siempre resulta mayor, por lo cual el tránsito en los cauces será desarrollado con el método de Muskingum, empleando las siguientes ecuaciones:

Donde, I y O son calculados de ingreso y salida, al inicio y final del intervalo de tiempo, X y K son parámetros de Muskingum.

X es un factor de ponderación que varía entre 0.0 a 1.0.

K representa el tiempo de viaje en el cauce.

es el intervalo de tiempo de análisis y las constantes C1, C2 y C3 se encuentran con:

$$1 = \frac{0.5 - }{- + 0.5}$$

$$2 = \frac{0.5 + }{- + 0.5}$$

$$3 = \frac{- - 0.5}{- + 0.5}$$

$$1 + 2 + 3 = 1$$

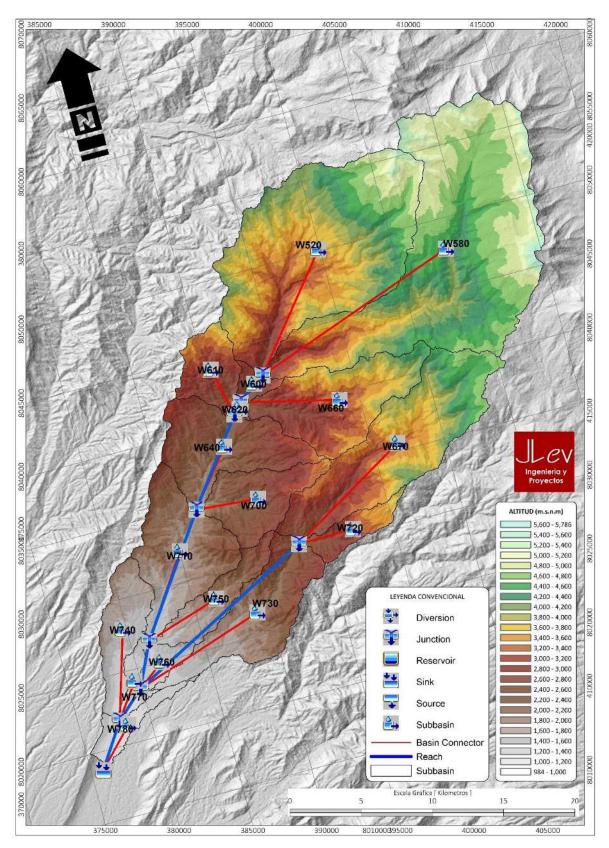
Cuando uno de los canales es determinado largo, este se subdivide en varios sub tramos en base a la ecuación:

$$= [\frac{}{3}] + 1$$

Donde n es el número de subtramos, L es la longitud del cauce, es el intervalo de tiempo de análisis, V es la velocidad promedio del flujo del cauce. Esta subdivisión de cauces es recomendable para los cauces largo s donde se quiere evitar la inestabilidad numérica. Aquí los cauces largos se refieres a esos donde falla la condición:

3.6.1.2 DATOS DEL PROYECTO

3.6.1.2.1 ESQUEMA TOPOLOGICO DE LA CUENCA


Es la representación física de la cuenca que es construido mediante la conexión de una serie de elementos hidrológicos, de modo que formen una red que refleje el movimiento real del agua en la cuenca. El área total de la cuenca es subdividida en sub cuencas y/o microcuencas desde la parte superior hasta la desembocadura del cauce del río Caplina.

A cada tramo se le proporcionó números topológicos acompañado por la letra R y a las sub cuencas un nombre compuesto por números y letras asociadas la cuenca (W) como se muestra en la Figura 20.

El área de proyecto y la red de ríos asociados, fueron configuradas 17 sub cuencas. La delimitación de las sub cuencas fue realizada con el módulo Hec-Hms instalado en Arcgis 10.8, estas áreas corresponden a puntos de interés, donde se quiere conocer caudales máximos.

Para la obtención de las láminas de precipitación en las sub cuencas, éste se calculará en los Centroide correspondientes.

Figura 20 Esquena Topológico de la cuenca del Rio Caplina

3.6.1.2.2 NUMERO DE CURVA Y ABSTRACCION INICIAL

Para establecer el número de curva recurrimos a bases digitales del tipo Shapefile como son la geomorfología del suelo (SUELO) y uso de suelo (USO DEL SUELO); cruzando ambas capas generamos un mapeo de número de curvas en la cuenca y sub cuencas que oscila entre valores de 55 a 89 en condiciones normales como se puede ver en la siguiente figura.

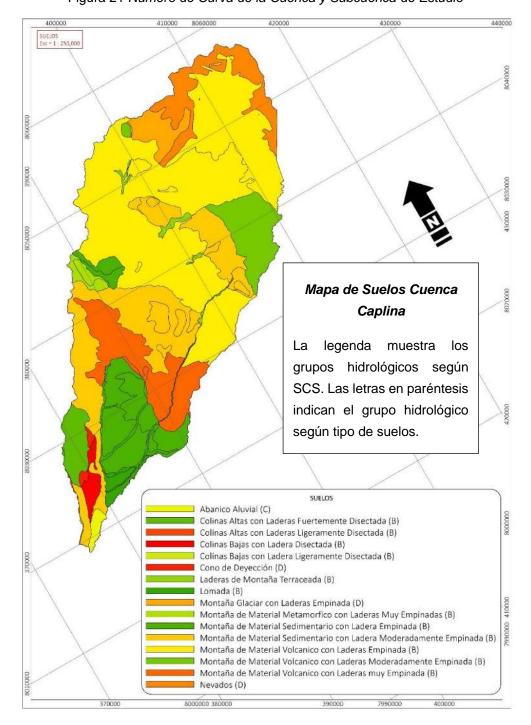
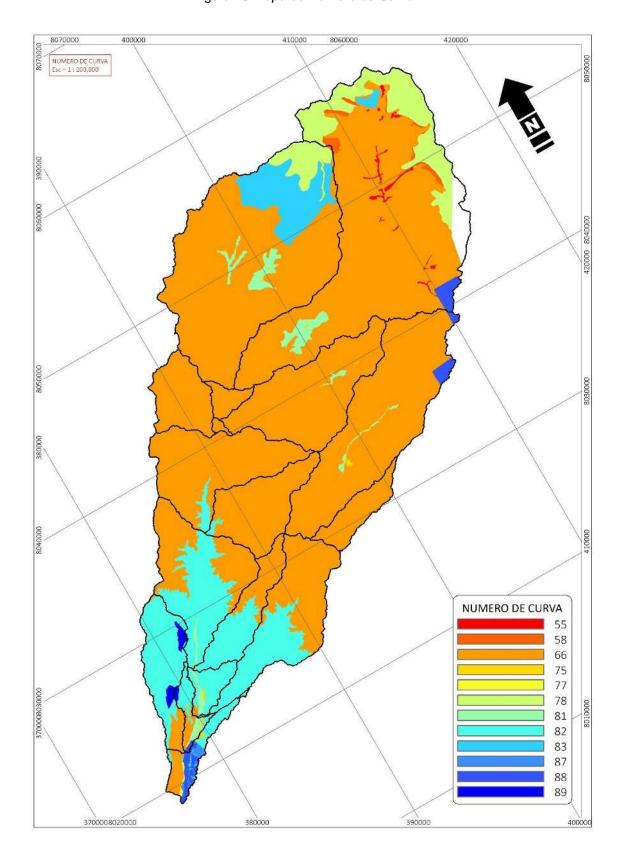



Figura 21 Numero de Curva de la Cuenca y Subcuenca de Estudio

400000 8080000 USO DEL SUELO Esc = 1 : 250,000 **USO DEL SUELO** ACTIVIDAD AGROPECUARIA ACTIVIDAD MINERA **BOSQUES-QUEÑOALES** CENTRO POBLADO **DESIERTO COSTERO GLACIARES** HERBAZAL(PAJONAL)-MATORRAL(TOLAR) HERBAZAL-BOFEDAL HERBAZAL-TILLANDSIAL MATORRAL-SUCULENTAS NIVAL SUCULENTAS-MATORRAL Mapa de Uso de Suelos Cuenca Caplina Los usos de suelos son asociados según las condiciones hidrológicas de la SCS para la determinación del número de curva en estado normal.

Figura 22 Mapa de Uso de Suelos Cuenca Caplina

Figura 23 Mapa de Numero de Curva

Realizamos un análisis zonal estadístico, teniendo como parámetros de ingreso el ráster de número de curvas y el vector de Subcuencas, el cual resumimos en la Tabla 49, estableciendo el promedio zonal como el valor de número de curva para cada sub cuenca.

Tabla 49 Numero de Curva de las Cuencas y Subcuencas de estudio

Subcuenca	Mínima	Máxima	Rango	Promedio
W520	58	83	25	69
W580	55	88	33	68
W600	66	66	0	66
W610	66	66	0	66
W620	66	66	0	66
W640	66	82	16	66
W660	66	81	15	66
W670	66	88	22	66
W700	66	82	16	66
W710	66	89	23	74
W720	66	66	0	66
W730	66	82	16	72
W740	66	89	23	80
W750	66	82	16	75
W760	66	82	16	81
W770	66	89	23	78
W780	66	88	22	79

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

En el siguiente cuadro se presenta la información de los parámetros de cálculo de la abstracción en la cuenca a través del método de SCS, la misma que se encuentra en función del número de curva (CN), el almacenamiento potencial (S) y la abstracción inicial (Ia). Como se explicó anteriormente los valores del número de curva fueron obtenidos de las tablas propuestas en el libro de Hidrología Aplicada de Ven Te Chow.

Tabla 50 Parámetros de Perdidas en las Subcuencas

		Nún	nero de C	Parámetros		
N°	Cuenca	Seco	Normal	Húmedo	Parai	netros
		CNI	CNII	CNIII	S (mm)	la (mm)
1	W520	49	69	84	48.91	9.78
2	W580	48	68	83	51.23	10.25
3	W600	45	66	82	56.08	11.22
4	W610	45	66	82	56.08	11.22
5	W620	45	66	82	56.08	11.22
6	W640	45	66	82	56.08	11.22
7	W660	45	66	82	56.08	11.22
8	W670	45	66	82	56.08	11.22
9	W700	45	66	82	56.08	11.22

GERENCIA DE

INFRAESTRUCTURA

SUB GERENCIA DE ESTUDIOS

		Nún	nero de C	Parámetros		
N°	Cuenca	Seco	Normal	Húmedo	Palai	neuos
		CNI CNII CNIII		CNIII	S (mm)	la (mm)
10	W710	55	74	87	38.25	7.65
11	W720	45	66	82	56.08	11.22
12	W730	52	72	86	42.33	8.47
13	W740	63	80	90	27.21	5.44
14	W750	56	75	88	36.29	7.26
15	W760	65	81	91	25.53	5.11
16	W770	60	78	89	30.70	6.14
17	W780	62	79	90	28.94	5.79

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

Finalmente calibramos los números de curva de acuerdo a las huellas hídricas y registro estimado del caudal máximo el 08 de febrero del 2019 en la Bocatoma Challata.

Tabla 51 Calibrados Parámetros de Perdidas en las Subcuencas

		Número de Curva	Parámetros		
N°	Cuenca	Calibrado	Paraili	elios	
		CNcalibrado	S (mm)	la (mm)	
1	W520	90	27.00	5.64	
2	W580	89	31.14	6.28	
3	W600	86	39.78	8.27	
4	W610	86	39.78	8.27	
5	W620	86	39.78	8.27	
6	W640	82	55.76	11.15	
7	W660	86	39.78	8.27	
8	W670	87	37.95	7.59	
9	W700	86	39.78	8.27	
10	W710	82	55.76	11.15	
11	W720	82	55.76	11.15	
12	W730	91	25.12	5.02	
13	W740	97	7.86	1.57	
14	W750	91	25.12	5.02	
15	W760	81	59.58	11.92	
16	W770	89	31.39	6.28	
17	W780	90	28.22	5.64	

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

3.6.1.2.3 PARAMETROS DE FORMA DEL HIDROGRAMA DE SNYDER

En el siguiente cuadro se resume el cálculo de los parámetros de transformación de la precipitación en escorrentía a nivel de sub cuencas, aplicando el método del Hidrograma de Snyder. Donde L es la longitud de cauce más largo, Lc es la longitud al Centroide del cauce y Ct, Cp, Tp son parámetros de forma del Hidrograma de Snyder.

Tabla 52 Parámetros del Hidrograma Snyder

Nombre	Parámetros	de Subcuenca	Parámetros Hidrograma Snyder			
Subcuenca	L (km)	Lc (km)	Ct	Tp (hr)	Ср	
W520	24.18	11.26	2	8.06	0.6	
W580	35.70	21.24	2	10.96	0.6	
W600	4.57	1.81	2	2.83	0.6	
W610	9.40	4.76	2	4.69	0.6	
W620	1.83	0.54	2	1.50	0.6	
W640	13.45	5.16	2	5.35	0.6	
W660	17.18	8.26	2	6.63	0.6	
W670	23.09	11.47	2	8.00	0.6	
W700	12.77	5.86	2	5.47	0.6	
W710	16.53	7.75	2	6.43	0.6	
W720	10.07	4.36	2	4.66	0.6	
W730	20.58	11.49	2	7.73	0.6	
W740	14.48	8.46	2	6.35	0.6	
W750	14.27	6.72	2	5.90	0.6	
W760	6.12	2.62	2	3.45	0.6	
W770	7.83	3.54	2	4.06	0.6	
W780	12.52	4.81	2	5.13	0.6	

3.6.1.2.4 PARAMETROS DE RIOS (TRANSITO DE HIDROGRAMAS)

En el siguiente cuadro se muestra los parámetros calculados para efectuar el tránsito de las ondas formadas en la sub cuenca a través de los cauces hasta llegar a la salida de la subcuenca. El método seleccionado es el método de Muskingum.

Tabla 53 Calculo de Parámetros de Muskingum

Causa	Parámetros de Muskingum						
Cauce	Ks	х	n (subtramos)				
R210	0.43	0.2	2				
R230	0.2	0.2	1				
R280	1.35	0.2	6				
R330	1.62	0.2	7				
R350	0.72	0.2	3				
R360	1.77	0.2	7				
R380	0.91	0.2	4				
R390	1.36	0.2	6				

3.6.1.2.5 LAMINAS DE PRECIPITACION

El procedimiento para la obtención de las láminas de precipitación en los Centroide de las sub cuencas se ha desarrollado previamente en capítulos anteriores, a continuación, resumimos en el siguiente cuadro las láminas de precipitación de cada subcuenca.

Tabla 54 Lamina de Precipitación (mm) máxima calculado para cada Estación seleccionada

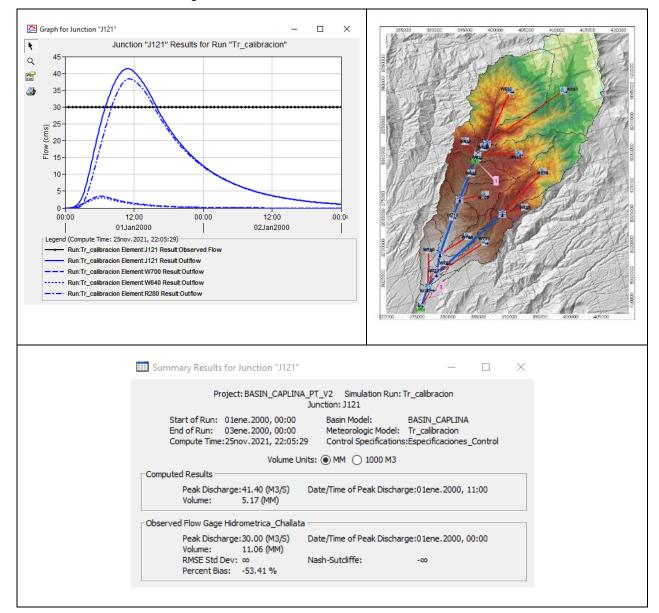
Estación	Altura de Centroide	Periodos de Retorno (años)									
		10	30	35	50	70	100	140	175	500	1000
Paucarani	4625	38.58	43.21	43.78	45.00	46.07	47.14	48.10	48.71	51.35	52.91
Talabaya	3409	32.44	39.34	40.26	42.35	44.28	46.30	48.16	49.39	55.02	58.65
Palca	3023	18.76	24.05	24.85	26.75	28.63	30.72	32.82	34.25	41.71	47.34
Calientes	1200	9.63	13.85	14.53	16.17	17.83	19.74	21.67	23.03	30.42	36.33

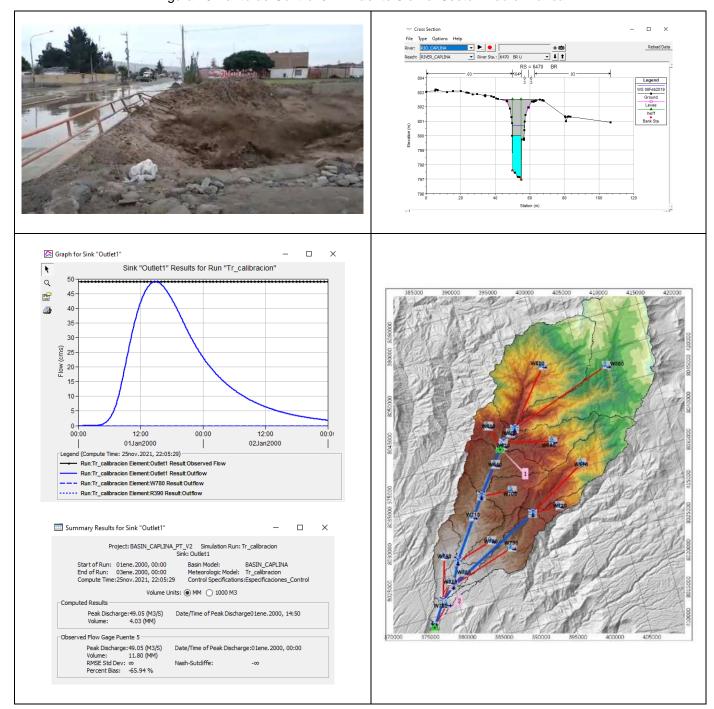
Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

3.6.1.2.6 VALIDACION DEL MODELO HIDROLOGICO

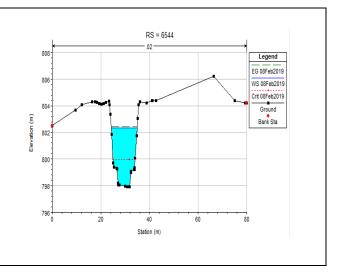
Para la validación del modelo hidrológico hemos considerado dos puntos de control específicos, una es la bocatoma Challata y la otra el Puente en el Sector Piedra Blanca (Puente 5) para la precipitación ocurrida el 08 de febrero del 2019.

El 08 de febrero del 2019, Senamhi estimo un caudal máximo en la estación Challata de 30 m3/s, este dato no está certificado ya que hubo inconvenientes para el registro de este caudal máximo. Se ingresó un Hidrograma con un caudal pico de 30 m3/s para calibrar las sub cuencas que descargan en este punto de control, calibrando los parámetros de ingreso al modelo hidrológico, a continuación, un cuadro resumen:




Figura 24 Punto de Control 01 – Bocatoma Challata

Como se puede ver en la Figura 25, se ha verificado con las huellas hídricas el tirante que se dio en la sección 6+520 aguas arriba del Puente 05 en la vía Celestino Vargas en el sector Piedra Blanca, el tirante estimado en campo es de 3.50 m producido por un caudal de 49.05 m3/s y el calculado es de 3.33 m producido por un caudal de 49.05 m3/s.


Así mismo podemos verificar que el orificio del puente trabajo a sección llena, que estuvo cerca de funcionar como vertedero.

Las secciones hidráulicas son resultados del modelo hidráulico que se detalla en el ítem 5.

Figura 25 Punto de Control 02 – Puente 5 en el Sector Piedra Blanca

3.6.1.3 **MODELO DE CONTROL**

Las especificaciones de control, especifica el intervalo de tiempo temporal de cálculo y la duración total de la simulación que incluyen las horas de inicio y fin de la simulación. En este proyecto se ha definido un intervalo de cálculo de 30 minutos.

3.6.1.4 **RESULTADOS DE LA SIMULACION**

Los hidrogramas de avenida fueron calculados para los siguientes periodos de retorno:

- Periodo de retorno de 50 años para Delimitación de faja marginal terrenos agrícolas.
- Periodo de retorno de 100 años para Delimitación de faja marginal zona urbana.
- Periodo de retorno de 140 años para identificación de puntos vulnerables de inundación.
- Periodo de retorno de 500 años para cálculo de socavación.

Los resultados del modelamiento hidrológico los resumimos en el siguiente cuadro:

Tabla 55 Caudales Máximos – Método HEC-HMS

Sub	Área (Km2)	Caudales Máximos (m3/s)						
Cuenca								
J107	535.74	41.42	107.72	129.23	140.58	148.23	188.64	
J110	708.65	49.2	122.6	150.29	165.21	175.43	230.97	
J113	678.46	49.1	120.43	147.18	161.58	171.38	224.58	
J116	91.26	8.21	11.9	16.34	18.87	20.61	30.53	
J121	468.67	41.4	106.3	126.59	137.17	144.25	181.04	
J126	374.69	37.4	100.09	117.61	126.56	132.51	162.64	
J131	394.86	38.53	102.2	120.46	129.82	136.07	167.86	

Provecto:

Sub	Área	Caudales Máximos (m3/s)						
Cuenca	(Km2)							
J138	319.04	33.4	94.16	109.36	116.98	122	146.86	
Outlet1	718.57	49.05	122.34	150.1	165.08	175.33	231.17	
R210	319.04	33.34	93.94	109.09	116.69	121.7	146.49	
R230	374.69	37.37	99.99	117.51	126.46	132.41	162.51	
R280	394.86	38.36	101.62	119.79	129.13	135.35	167.01	
R330	468.67	41.22	105.67	125.89	136.41	143.45	180.12	
R350	535.74	41.33	107.44	128.93	140.24	147.89	188.26	
R360	91.26	8.14	11.8	16.21	18.72	20.45	30.3	
R380	678.46	49.01	120.14	146.85	161.22	171.01	224.11	
R390	708.65	49.05	122.16	149.78	164.69	174.87	230.32	
W520	139.79	15.77	56.31	65.75	70.42	73.51	88.46	
W580	179.25	19.46	42.29	48.73	52.02	54.18	65.25	
W600	4.90	1.13	1.66	2.3	2.67	2.92	4.37	
W610	19.26	2.62	4.88	6.52	7.43	8.06	11.53	
W620	0.91	0.37	0.54	0.75	0.87	0.95	1.43	
W640	45.28	3.04	4.96	7.4	8.83	9.84	15.76	
W660	50.74	5.17	7.58	10.51	12.17	13.33	19.9	
W670	79.23	7.68	11.03	15.05	17.32	18.89	27.77	
W700	28.54	3.48	5.11	7.09	8.21	8.99	13.43	
W710	47.35	0	1.64	3.08	4	4.68	9.02	
W720	12.03	0.93	1.51	2.25	2.69	3	4.8	
W730	43.62	1.93	6.15	8.58	9.96	10.93	16.5	
W740	23.97	0.46	6.18	8.27	9.42	10.23	14.77	
W750	19.72	0.46	3	4.34	5.12	5.67	8.88	
W760	7.84	0	0.11	0.35	0.53	0.67	1.69	
W770	6.22	0	0.62	1.06	1.32	1.52	2.75	
W780	9.92	0	0.95	1.56	1.93	2.2	3.85	

Punto Outlet1 es el punto de aforo o punto de salida de nuestro modelo hidrológico.

3.6.2 **RESUMEN**

Finamente obtenemos los hidrogramas de la cuenca Caplina, los cuales nos servirán para el modelo hidráulico como variable de ingreso.

Graph for Sink "Outlet1" Sink "Outlet1" Results for Run "Tr calibracion" k 50 Q 45 40 35 30 25 Flow (20 15 10 5 00:00 12:00 00:00 12:00 00:00 01Jan2000 02Jan2000 Legend (Compute Time: 25nov.2021, 22:05:29) Run:Tr_calibracion Element:Outlet1 Result:Observed Flow Run:Tr calibracion Element:Outlet1 Result:Outflow -- Run:Tr_calibracion Element:W780 Result:Outflow Run:Tr_calibracion Element:R390 Result:Outflow Global Summary Results for Run "Tr_calibracion" Project: BASIN_CAPLINA_PT_V2 Simulation Run: Tr_calibracion Start of Run: 01ene.2000, 00:00 Basin Model: BASIN_CAPLINA End of Run: 03ene.2000, 00:00 Compute Time:25nov.2021, 22:05:29 Meteorologic Model: Tr_calibracion Control Specifications: Especificaciones Control Volume Units:

MM

1000 M3 Show Elements: Initial Selection V Sorting: Hydrologic ∨ Time of Peak Hydrologic Drainage Area Peak Discharge Volume Element (KM2) (M3/S) (MM) 718.57457 Outlet1 49.05 01ene.2000, 14:50 4.03

Figura 26 Hidrograma de Avenida del 08 de Febrero del 2019

Figura 27 Hidrograma de Avenida para 50 años de periodo de retorno

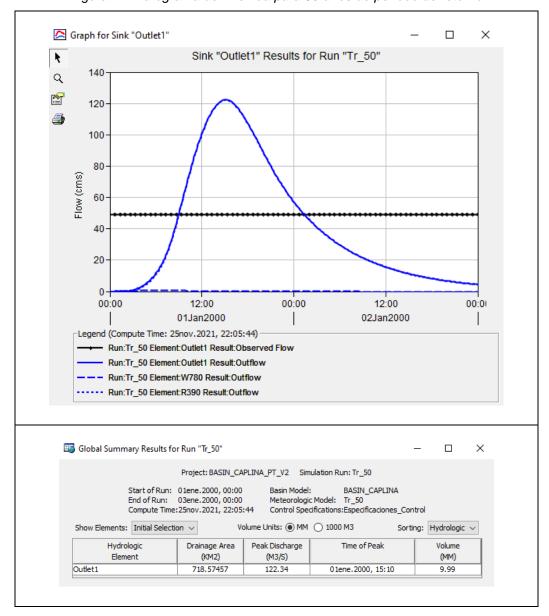


Figura 28 Hidrograma de Avenida para 100 años de periodo de retorno

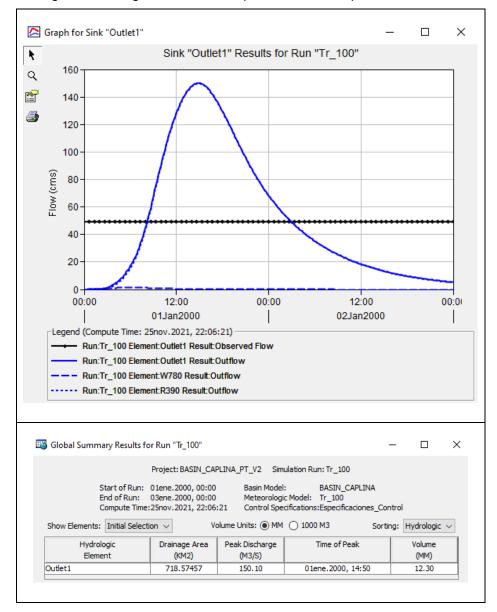


Figura 29 Hidrograma de Avenida para 140 años de periodo de retorno

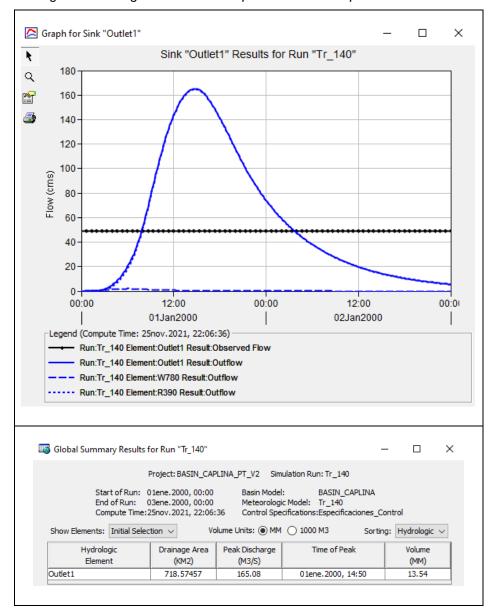


Figura 30 Hidrograma de Avenida para 175 años de periodo de retorno

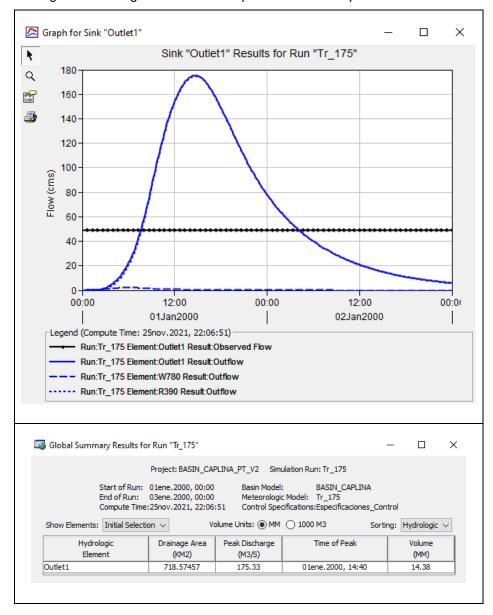
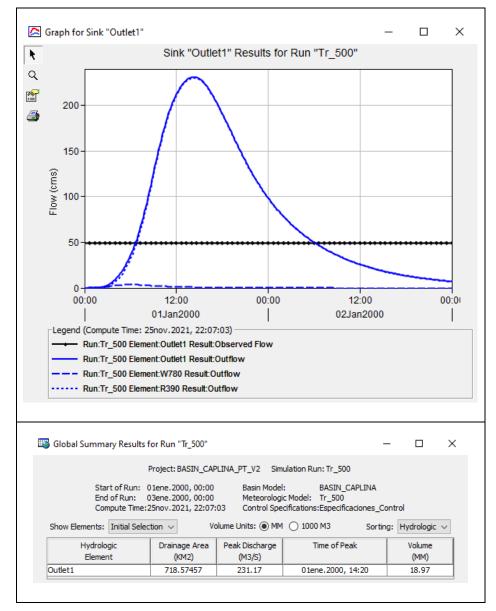



Figura 31 Hidrograma de Avenida para 500 años de periodo de retorno

4 TOPOGRAFÍA

4.1 CONTROL DE COORDENADAS

4.1.1 HORIZONTAL

Para la georreferenciación de estos puntos se ha aplicado la técnica de posicionamiento GPS en modo estático relativo con procesos. Los equipos utilizados son receptores GPS de doble frecuencia con las siguientes características.

- Tecnología avanzada larga distancia medición en tiempo real RTK (Real Time Kinematic).
- 12 canales para L1 y L2 canales.
- Antena GPS geodésica de alta precisión AT502.
- Fiabilidad en medición de líneas base de hasta 30 km. del 99.99%.
- Actualización de posición cada 10Hz.
- Precisiones de medición de la señal: con medida de fase portadora e.m.c. de 0.2 mm, en L1 y en L2; y, con código (pseudodistancia) e.m.c. de 20 mm, en L1 y en L2.
- Precisiones de medida en post proceso con software Topcon: precisión planimétrica (X,Y) +/- (5mm. +/- 0.5 ppm.) en modo estático; y, precisión altimétrica (H): +/- (10 mm +/- 0.5 ppm) en modo estático.
- Desviación típica a priori (₀): tolerancia planimétrica (X, Y) +/- 5cm. en modo estático; y, precisión altimétrica (H): +/- 7.5 cm. en modo estático.

En el control horizontal de los puntos de control inicialmente, se realizaron observaciones de más de 4 horas en dos días consecutivos, enlazando los Puntos de control con las antenas del Rastreo Permanente del IGN peruano para obtener sus coordenadas sobre el elipsoide de referencia.

A partir de esta observación, fue medido el resto de los puntos de control, que se efectuó por irradiación desde los puntos geodésicos de orden C, realizándose observaciones de dos (02) horas para cada punto de control.

Asimismo, fue complementado hojas de campo para cada punto con los parámetros y comentarios que faciliten la detección e identificación de posibles errores de cálculo.

Se han tenido en cuenta a la hora de implantar los puntos de control y las bases de la poligonal de apoyo, que la zona este libre de vegetación y posibles apantallamientos físicos y no afecte a la señal GPS y se tenga una observación sin saltos de ciclo y posterior calculo adecuado.

En la poligonal de apoyo se ha prestado especial atención a la verificación de la visual directa y recíproca entre bases.

4.1.2 **VERTICAL**

Una vez que están implantadas y observadas para su control planímetro, se procede a la nivelación de los puntos de control.

Debido a que los puntos de nivelación de alta precisión del IGN peruano están a una distancia a la cual es imposible arrastrar una nivelación geométrica, se opta por la cota ortométrica utilizando la ESTACION GNSS DEL RASTEO PERMANENTE y desde este realizar la nivelación geométrica al resto de los puntos de control y a la poligonal de apoyo que se utilizaran para efectuar el levantamiento.

4.2 GEORREFERENCIACIÓN

La Red Geodésica Nacional (RGN) establecida por el Instituto Geográfico Nacional (IGN) para todo el territorio de la república del Perú está basada en el Sistema de Referencia Geocéntrico para las Américas (SIRGAS) sustentado en el Marco Internacional de Referencia Terrestre (ITRF2000) relacionado con el elipsoide WGS84.

4.2.1 SISTEMA DE REFERENCIA

El sistema de referencia adoptado para el levantamiento topográfico del río Caplina es la Estación GNSS BASE TACNA-IGN (TC01) de rastreo permanente para el post procesado conjuntamente por medio de la ficha técnica se corrigen los valores de la data de Control de la Red Geodésica Nacional mediante el Método Estático.

La Tabla 56 muestra los vértices geodésicos de la Estación GNSS BASE TACNA-IGN (TC01).

Cuadrícula Local Global Ы 1 Este* 366948.903 Lat. 18°00'16.0926" Lat. 18°00'16.0926" 8008868.810 70°15'24.3990" 2 Norte* Lon. Lon. 70°15'24.3990" Elevación** 3 Elevación** 570.870 604.577 Elevación** 604.577

Tabla 56 Vértices geodésicos

Nota: Lat.: Latitud (S). Lon.: Longitud (O). * en metros. ** en metros sobre el nivel del mar (m.s.n.m.). Fuente: Estudio de Topografía del Proyecto CUI 2476055.

La Tabla 57, muestra la representación cartográfica, la cual utiliza el sistema de proyección Universal Transversal de Mercator (UTM).

Tabla 57 Representación cartográfica

ld	Descripción	Denominación
1	Nombre	World Wide / UTM
2	Datum	WGS 1984
3	Zona	19 south
4	Geoide	EGM 2008_1

Nota: Fuente: Estudio de Topografía del Proyecto CUI 2476055.

4.2.2 PUNTOS GEODÉSICOS ORDEN C

Fueron determinados ocho (08) puntos geodésicos de orden C para ajustar el levantamiento topográfico de los 28.060 Km. del río Caplina a la Red Geodésica Nacional (RGN) por la Orden de Servicio N°1575-2021, el cual fue denominado Posicionamiento y Georreferenciación de Puntos de Control Geodésicos.

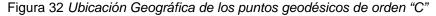
Los ocho puntos geodésicos de orden C fueron establecidos bajo condiciones ambientales normales a 16 °C de temperatura promedio con cielo despejado y ausencia de precipitaciones.

El producto de la O/S N°1575-2021 fue conseguir la Certificación de Punto Geodésico emitida por el Instituto Geográfico Nacional (IGN) por medio de su correspondiente Subdirección de Certificaciones. Además, ejecutó la monumentación de los puntos geodésicos de orden C con sus respectivamente placas de bronce.

La Tabla 58, muestras las coordenadas proyectadas de los ocho (08) puntos geodésicos de orden C utilizados para el levantamiento topográfico del río Caplina. Los puntos geodésicos en mención corresponden a la Zona 19 Sur.

Tabla 58 Ubicación de los puntos geodésicos de orden C

ID	Código	Norte*	Este*
1	TAC01178	8029878.159	383555.457
2	TAC01179	8026443.329	381347.402
3	TAC01180	8025447.110	381174.231
4	TAC01181	8022238.164	378546.040
5	TAC01182	8019436.504	376322.132
6	TAC01183	8017442.875	375419.937
7	TAC01184	8011452.512	373681.403
8	TAC01185	8008102.591	371225.919


Nota: * en metros. Fuente: Certificados de puntos geodésicos de orden C y Estudio de Topografía del Proyecto CUI 2476055.

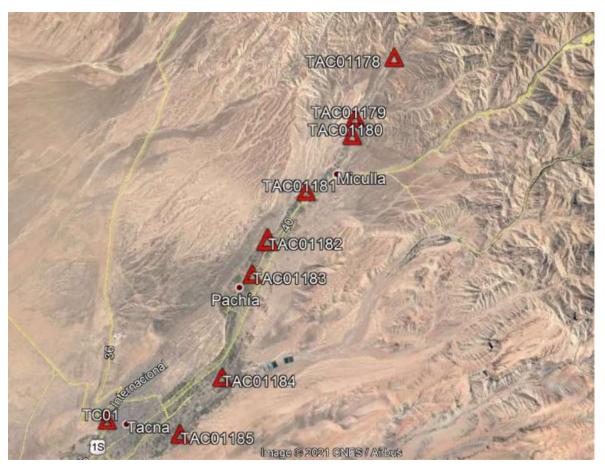

La Tabla 59, muestra las elevaciones de los ocho (08) puntos geodésicos de orden C utilizados para el levantamiento topográfico del río Caplina, las elevaciones en mención consideran la curvatura del elipsoide. Asimismo, muestra las elevaciones corregidas de los puntos geodésicos en mención y los factores de escala por proyección, altura y combinada

Tabla 59 Elevación y factores de escala de los puntos geodésicos de orden C

ID	0 (41	Elevación*		Factores de escala			
ID	Código	Original	Corregida	Proyección	Altura	Combinada	
1	TAC01178	1546.5254	1584.441	0.999767645	0.999750965	0.999518668	
2	TAC01179	1381.1082	1418.293	0.999774063	0.999777074	0.999551188	
3	TAC01180	1320.6308	1357.680	0.999774571	0.999786599	0.999561219	
4	TAC01181	1147.8714	1184.201	0.999782379	0.999813862	0.999596281	
5	TAC01182	1017.4073	1053.137	0.999789119	0.99983446	0.999623614	
6	TAC01183	941.3094	976.737	0.999791888	0.999846468	0.999638387	
7	TAC01184	751.5968	786.295	0.999797280	0.99987640	0.999673704	
8	TAC01185	640.5724	674.718	0.999805024	0.999893937	0.999698982	

Nota: * en metros sobre el nivel del mar (msnm). Fuente: Certificados de puntos geodésicos de orden C y Estudio de Topografía del Proyecto CUI 2476055.

Nota: * en metros. Certificados de puntos geodésicos de orden C anexados en el presente estudio. Fuente Estudio de Topografía de la Sub Gerencia de Estudios del GRT.

4.3 PUNTOS DE CONTROL Y POLIGONAL DE APOYO

Relación de criterios para definir los puntos de control y la poligonal de apoyo del levantamiento topográfico de los 28.060 Km del río Caplina.

- Los puntos de control para la poligonal de apoyo han sido monumentados mediante hitos de concreto de 40 x 40 cm y 40 cm de profundidad; y, una estaca de fierro 1/2" enterrada 40 cm de profundidad.
- Desde la ubicación de cada punto de control debe observarse la ubicación de los puntos de control más próximos a este.
- Los puntos de control son ubicados en zonas donde no desaparezcan debido al desarrollo de las obras, siempre que lo permita la visibilidad a los elementos a replantear.

- La distancia promedio entre puntos de control es 500 m, la cual permite replantear la superficie del terreno a distancias medias de 250 m.
- La poligonal de apoyo está dada por la unión de los puntos de control.

La Tabla 60, muestra las coordenadas de los 49 puntos de control establecidos para el levantamiento topográfico del tramo del río Caplina, los cuales fueron determinados en base a los criterios descritos anteriormente; la longitud de 28.060 Km del tramo de estudio del Río Caplina; y, los puntos geodésicos de orden C descritos.

Tabla 60 Puntos de control para el levantamiento topográfico del tramo del río Caplina

ld	Descripción	Norte*	Este*	Latitud	Longitud	Elevación**
0	BM-00	8030042.819	383591.127	S17°29'06.36	W70°3'19.44	1544.124
1	BM-01	8029563.884	383445.035	S17°29'26.16	W70°3'21.24	1509.141
2	BM-02	8029305.029	383142.492	S17°29'29.40	W70°3'39.60	1498.139
3	BM-03	8028875.178	382791.302	S17°29'34.44	W70°3'43.92	1468.393
5	BM-05	8028049.038	382514.267	S17°29'43.80	W70°3'47.16	1432.500
6	BM-06	8027660.153	382150.152	S17°30'02.88	W70°3'51.84	1413.270
7	BM-07	8027232.455	381890.165	S17°30'07.92	W70°3'55.08	1388.629
8	BM-08	8026922.669	381598.564	S17°30'11.52	W70°4'13.08	1370.827
9	BM-09	8026611.316	381217.741	S17°30'15.12	W70°4'17.76	1351.815
10	BM-10	8026083.338	381150.189	S17°30'21.24	W70°4'18.48	1330.356
11	BM-11	8025633.947	381142.463	S17°30'41.04	W70°4'18.48	1311.686
12	BM-12	8025208.347	381126.023	S17°30'45.72	W70°4'18.84	1292.181
13	BM-13	8024825.660	380941.638	S17°30'50.40	W70°4'21.00	1273.553
14	BM-14	8024394.663	380798.302	S17°30'55.44	W70°4'22.80	1256.900
15	BM-15	8023714.513	380080.546	S17°31'17.76	W70°4'31.80	1222.335
17	BM-17	8023468.204	379715.913	S17°31'20.64	W70°4'50.52	1207.619
18	BM-18	8023027.821	379439.016	S17°31'25.68	W70°4'54.12	1189.417
19	BM-19	8022634.829	379130.674	S17°31'30.36	W70°4'57.72	1170.635
20	BM-20	8022369.352	378683.722	S17°31'33.24	W70°5'03.48	1147.765
22	BM-22	8021775.063	377894.183	S17°31'54.84	W70°5'27.60	1112.215
23	BM-23	8021420.884	377584.364	S17°31'58.80	W70°5'31.20	1094.400
24	BM-24	8020979.585	377343.023	S17°32'03.84	W70°5'34.08	1076.746
25	BM-25	8020578.778	377101.941	S17°32'08.52	W70°5'37.32	1061.477
26	BM-26	8020125.380	376911.935	S17°32'28.32	W70°5'39.48	1044.199
27	BM-27	8019872.905	376492.640	S17°32'31.20	W70°5'44.88	1026.459
28	BM-28	8019456.358	376355.363	S17°32'36.24	W70°6'00.72	1015.127

ld	Descripción	Norte*	Este*	Latitud	Longitud	Elevación**
29	BM-29	8019025.149	376042.282	S17°32'41.28	W70°6'04.68	993.363
30	BM-30	8018585.510	375845.350	S17°33'00.72	W70°6'07.20	981.104
31	BM-31	8018132.861	375709.670	S17°33'06.12	W70°6'09.00	963.830
32	BM-32	8017692.724	375491.892	S17°33'11.16	W70°6'11.52	947.973
33	BM-33	8017235.153	375407.540	S17°33'16.56	W70°6'12.60	939.160
34	BM-34	8016792.110	375034.241	S17°33'36.00	W70°6'17.28	917.138
35	BM-35	8016487.928	374708.033	S17°33'39.60	W70°6'21.24	902.013
36	BM-36	8016016.721	374573.472	S17°33'45.00	W70°6'37.44	887.697
37	BM-37	8015588.059	374374.201	S17°33'50.04	W70°6'39.60	872.587
38	BM-38	8015093.457	374238.461	S17°33'55.80	W70°6'41.40	856.744
39	BM-39	8014662.494	374152.165	S17°34'15.24	W70°6'42.48	842.736
40	BM-40	8014214.530	373973.751	S17°34'20.64	W70°6'44.64	830.287
41	BM-41	8013686.051	373908.519	S17°34'26.76	W70°6'45.72	812.483
42	BM-42	8013260.611	374113.199	S17°34'31.80	W70°6'43.20	800.767
43	BM-43	8012811.652	374108.316	S17°34'51.24	W70°6'43.20	790.871
44	BM-44	8012386.968	374014.581	S17°34'56.28	W70°6'44.28	778.437
45	BM-45	8011896.534	373878.676	S17°35'02.04	W70°6'46.08	763.533
46	BM-46	8011436.851	373716.854	S17°35'07.44	W70°6'48.24	752.096
47	BM-47	8010969.117	373557.997	S17°35'27.24	W70°6'50.04	736.357
49	BM-49	8010031.161	373045.514	S17°35'38.40	W70°6'56.52	709.652
52	BM-52	8009477.627	372341.814	S17°35'44.52	W70°7'19.56	685.562
54	BM-54	8008412.444	371386.271	S18°00'11.52	W70°7'31.44	646.076
55	BM-55	8007929.762	371153.284	S18°00'17.28	W70°7'48.72	632.607

Nota: * en metros. ** en metros sobre el nivel del mar (m.s.n.m.). Fuente: Estudio de Topografía del Proyecto CUI 2476055.

LEVANTAMIENTO TOPOGRÁFICO 4.4

El levantamiento topográfico consiste en el conjunto de principios y procedimientos que tienen por objeto la representación gráfica de la superficie del terreno con sus formas de relieve y detalles, los cuales pueden ser de origen natural o artificial.

4.4.1 **CONSIDERACIONES PREVIAS**

El levantamiento topográfico fue realizado desde la base poligonal de apoyo, tomando la cantidad necesario de puntos con perfiles en sentido longitudinal y transversal para representar con precisión los elementos que se encuentran sobre la superficie del terreno.

La ubicación de los puntos levantados fue determinada en base a los siguientes criterios:

- Eje y bordes del cauce del río.
- Cabeza y pie de talud de zonas con pendientes pronunciadas.
- Bocatomas Challata y Calientes; y, canales de regadío.
- Eje y bordes de vías asfaltadas y trocha existentes.
- Fondo, talud y cabeza de zonas de quebradas

A medida que fueron levantados los puntos topográficos, en paralelo fue procesada la información levantada en gabinete de manera que pueda realizarse los ajustes necesarios y/o correcciones de la superficie por falta de densidad de puntos o mayor precisión de puntos para la representación de la superficie del terreno del tramo en estudio del río Caplina.

4.4.2 METODOLOGÍA DE TRABAJO

Antes de realizar el levantamiento topográfico, en gabinete hubo una reunión de coordinación del Equipo Técnico para la estandarización y homogeneidad de los métodos empleados acorde de los equipos topográficos solicitados.

Los métodos de trabajo empleados para el levantamiento topográfico fueron según Estación Total y GPD Diferencial.

Primer Método: Estación Total

La realización del levantamiento topográfico usando como herramienta básica la estación total, requirió de la determinación en campo de cada uno de los puntos que identifican los linderos o perímetros del terreno, lo cual implica acercarse lo más posible a cada uno de estos puntos y definir cuidadosamente el número de puntos que son necesarios para lograr una adecuada descripción física del terreno con los cuales se realizan las mediciones mediante radiación hasta alcanzar la densidad de puntos necesario para una buena representación y detalle de la representación del terreno.

La distancia máxima entre las estaciones de la poligonal fue condicionada al tipo de instrumental utilizado considerándose las dificultades relativas a retracción atmosférica, acceso, relieve, vegetación, extensión y condiciones climáticas sin exceder los 500 m. evitándose lecturas excesivas de ángulos verticales que puedan sobrepasar los 30° grados de elevación o depresión. Respecto a los puntos de amarre.

Asimismo, es idóneo para zonas de difícil acceso ya que también puede tomar lectura de puntos topográficos con y sin prisma reflector del láser emitido por la estación total.

Esta técnica consiste en localizar la estación total sobre un punto de coordenadas conocidas, mediante la medida directa de los ángulos horizontal y vertical, y la medida mediante electo distanciómetro de la distancia, se calculan las coordenadas del punto visado.

Esta técnica implica que solo se pueden medir aquellos puntos en los que hay visual directa desde el ocular de la estación total hasta el prisma reflector situado en el bastón que transporta el operador a los puntos a levantar.

Segundo Método: GPS Diferencial

Para este método se ha utilizado como herramienta básica el GPS DIFERENCIAL (RTK). La cual permite el levantamiento de puntos sobre el terreno sin necesidad de visibilidad directa de la base al punto a medir, esto se consigue mediante los algoritmos de calculo que realiza en receptor "móvil" recibiendo las correcciones de la base por medio de una radio de 0.5 W de potencia. Estos algoritmos lo que hacen es resolver las ambigüedades en un proceso de inicialización y recalcularlas en menos de un segundo en cada punto medido.

Las precisiones que se obtienen con este método son muy altas comparándolas con la topografía clásica ya que un punto radiado a 200 m. de distancia no presenta errores mayores a 5-10 mm.

El inconveniente es que solo se puede usar en zonas despejadas, ya que es indispensable la correcta recepción de los satélites, por lo que no puede usarse en zonas accidentadas de difícil acceso o en zonas cubiertas por vegetación alborea.

En los lugares donde no ha sido posible la utilización de la técnica GPS en tiempo real se ha usado estación total mediante el método de radiación.

Una vez obtenidas por combinación de ambos métodos las coordenadas definidas, se procede a la edición en gabinete de estos. Para ello se utiliza software específico en entorno CAD realizándose el dibujo final del terreno representándolo en su dimensión real en sus tres dimensiones.

De los métodos descritos, fueron determinados 62 046 puntos para el levantamiento topográfico de la superficie del tramo de estudio del río Caplina., los cuales representan una superficie total de 6 234.60 ha en el mismo tramo de estudio del río.

5 SIMULACION HIDRAULICA

La finalidad del modelamiento hidráulico bidimensional con el software IBER 2.5.2. de los 28.06 Km en estudio del río Caplina es determinar la extensión de la llanura de inundación frente una avenida de tiempo de retorno de 100 años, la cual será insumo principal para la delimitación de faja marginal del tramo mencionado. La selección del tiempo de retorno está sujeto a la RJ 332-2016-ANA debido a la presencia de asentamientos poblacionales en el tramo en estudio del proyecto en mención.

5.1 MARCO TEORICO

La modelización numérica de la hidrodinámica de ríos precisa del uso de teoría hidráulica del flujo en lámina libre y de los métodos numéricos para resolver las ecuaciones de conservación, el conjunto se ha definido recientemente como hidroinformática. El continuo desarrollo de la arquitectura de los ordenadores en las últimas décadas, con máquinas cada vez más rápidas y potentes, ha propiciado también el desarrollo de nuevas técnicas numéricas.

5.1.1 TIPOS DE MODELOS HIDRODINAMICOS

5.1.1.1 MODELOS UNIDIMENSIONALES

En una dimensión lo habitual es considerar el río como una línea, con una serie de puntos de cálculo que son las secciones transversales, de manera que la geometría del cauce es una propiedad de cada sección. En este caso, las hipótesis básicas que más influencian los resultados del modelo son: 1) el flujo de agua se produce en el sentido del eje del río y es perpendicular a cada sección transversal; 2) la cota de agua es constante en cada sección; 3) la velocidad del agua es constante en cada sección.

Un problema típico de los modelos 1D es la definición de las secciones transversales cuando existen llanuras de inundación importantes y el cauce principal tiene cierta curvatura. En estos casos es difícil definir las secciones de forma que se cumpla la primera hipótesis (flujo perpendicular a la sección) y sin que las secciones transversales se superpongan entre sí. Todavía más crítico en estos casos es el hecho de que la velocidad del agua es muy variable dentro de cada sección, siendo habitual la existencia de zonas muertas difíciles de definir a priori, y pudiendo incluso existir zonas de recirculación, con formación de vórtices.

5.1.1.2 MODELOS BIDIMENSIONALES

En dos dimensiones el río ya no se discretiza como una línea con una serie de secciones transversales, sino como una malla formada por una serie de celdas poligonales que representan la topografía del cauce y llanuras de inundación. Dicha malla puede ser regular o irregular, estructurada o no estructurada. La mayor flexibilidad para una buena representación de la geometría y contornos se

suele conseguir con una malla irregular. Lo habitual es que las mallas estén formadas por triángulos o cuadriláteros.

En la modelización en dos dimensiones, habitualmente el proceso que requiere de una mayor carga de trabajo es precisamente la generación de una buena malla de cálculo adaptada al caso de estudio, para obtener resultados más exactos en casos de estudio de inundaciones.

5.1.1.3 MODELOS TRIDIMENSIONALES

La utilización de modelos tridimensionales para el cálculo de zonas inundables es mucho menos común que la de los modelos 1D y 2D, debido a que la extensión espacial del modelo requeriría la utilización de mallas de cálculo de varios millones de elementos, con un coste computacional muy elevado. Los modelos 3D aplicados a hidráulica fluvial se suelen restringir al estudio del flujo local en meandros o en torno a estructuras hidráulicas como pilas de puentes, vertederos o compuertas.

Tabla 61 Comparación de Modelamientos Numéricos y Recomendaciones de Aplicación

1D	Cuasi – 2D	2D	3D
-Tramos largos de ríos -Canales	-Rios con desbordamiento localizados	-Estuarios -Tramos cortos de ríos -Llanuras de inundación -Flujo fuera de cauces -Obras hidráulicas	-Flujo local -Vertederos -Pilares de puentes

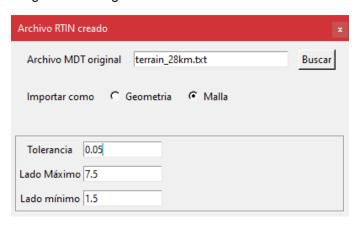
Fuente: Blade, E., Cea, L. Corestein, G. (2014), "Modelación numérica de inundaciones fluviales"

Para el caso de este estudio es recomendable el modelamiento hidráulico BIDIMENSIONAL debido a que no se conoce con exactitud la llanura de inundación del cauce para máximas avenidas, por lo tanto, un modelamiento hidráulico bidimensional ayudara a identificar estas zonas con una buena discretización topográfica del área de estudio.

5.1.2 **ECUACIONES HIDRODINAMICAS**

En el módulo hidrodinámico se resuelven las ecuaciones de conservación de la masa y de momento en las dos direcciones horizontales:

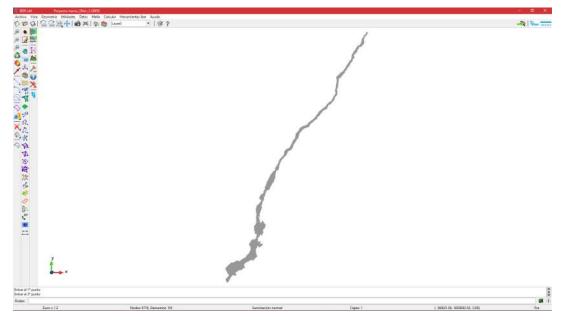
Donde, es el calado, , son las velocidades horizontales promedio en profundidad, es la aceleración de la gravedad, es la elevación de la lámina libre, es la fricción en la superficie libre debida al rozamiento producido por el viento, es la fricción debido al rozamiento del fondo, es la densidad del agua, es la velocidad angular de rotación de la tierra, es la latitud del punto considerado, , son las tensiones tangenciales efectivas horizontales, y , son respectivamente los términos fuente/sumidero de masa y de momento, mediante los cuales se realiza la modelización de precipitación, infiltración y sumideros.


5.2 SIMULACION HIDRAULICA PARA DELIMITACION DE FAJA MARGINAL CON IBER

5.2.1 GEOMETRIA DEL CAUCE – MODELO DIGIAL MDT

5.2.1.1 MALLA NO ESTRUCTURA

La determinación de la malla no estructural fue a partir del levantamiento topográfico utilizado en el modelamiento hidráulico con HEC-RAS. La superficie del terreno (*.tif) utilizada en el modelamiento en HEC-RAS para el diseño de las obras de protección también fue utilizada en el modelamiento en IBER y extensión *.txt (tamaño pixel 1 m). En el modelamiento fue considerado una malla no estructurada con longitud máxima de 7.5m; longitud mínima de 1.5m; y, tolerancia vertical 0.05m.


Figura 33 Configuración Malla no estructurada

Nota: Información del modelo del tramo en estudio rio Caplina (28.06 Km) Fuente: Elaboración Propia.

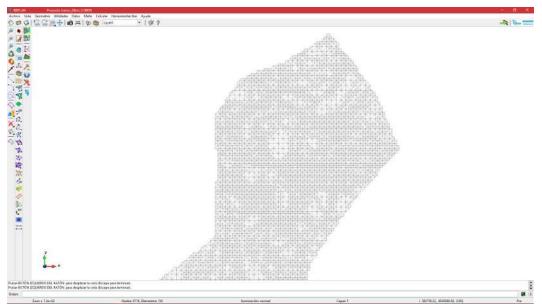
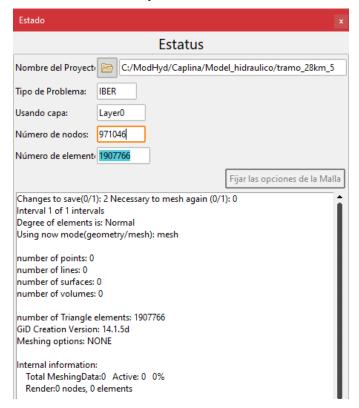

La siguiente figura muestra el esquema general de la malla no estructurada utilizada para el modelamiento hidráulico.

Figura 34 Malla no estructurada del tramo en estudio del rio Caplina (28.06 Km)

Nota: Información del modelo del tramo en estudio río Caplina (28.06 Km). Fuente: Elaboración Propia.


Figura 35 Malla no estructurada aguas arriba bocatoma Challata

Nota: Información del modelo del tramo en estudio río Caplina (28.06 Km). Fuente: Elaboración Propia.

La malla no estructurada obtenida para el modelo hidráulico bidimensional del tramo en estudio del río Caplina bajo las consideraciones de longitud máxima de 7.5m; longitud mínima de 1.5m; y, tolerancia vertical 0.05m está formada por 971,046 nodos y 1'907,766 elementos triangulares.

Figura 36 Numero de nodos y elementos de la malla no estructurada

Nota: Información del modelo del tramo en estudio río Caplina (28.06 Km). Fuente: Elaboración Propia.

5.3 CAUDAL DE MAXIMA AVENIDA Y CONDICIONES DE FRONTERA

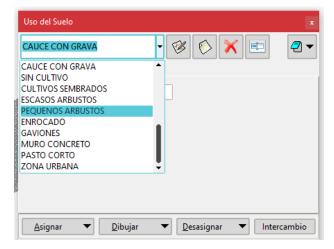
En la condición contorno de entrada fue considerado régimen SubCritico/crítico debido que solo se dispone de caudal los cuales ingresan perpendicular al contorno. Los caudales generados en las quebradas para el tiempo de retorno de 100 años fueron ingresando en las progresivas 28+060 (127.41 m3/s), 22+880 (4.34 m3/s), 19+140 (24.08 m3/s) y 16+460 (8.27 m3/s). Manifestar que los caudales fueron extraídos del software HEC-HMS del modelo desarrollado en capítulo ANALISIS DE MAXIMAS AVENIDAS.

() 🍘 🚱 | 🥋 🥁 🕂 | 📸 📇 | 🕸 📚 🗀 Jero - 18 3 7 N? Ø ▼ Entrada Caudal Total Tiempo [s] O [m3/s] Caudal Total Entrada Num 120 + Entidades <u>D</u>ibujar ▼ <u>D</u>esasignar B 1 Cerrar 0 Total_Discharge 西京社会 Critical/Subcritic al #N# 2 0.0 Total_Discharge 0 Critical/Subcritic t.XY al #N# 2 0.0 4.34 0 Total_Discharge Critical/Subcritic al #N# 2 0.0 Total_Discharge Critical/Subcritic al #N# 2 0.0 8.58 Seleccione BOTÓN IZQUIERDO de MOUSE para desplazar la vista (Escape para terminar) Pulsar BOTÓN IZQUIERDO DEL RATÓN para desplazar la vista (Escape para terminar).

Figura 37 Condición contorno progresiva 28 + 060

Nota: Información del modelo del tramo en estudio río Caplina (28.06 Km). Fuente: Elaboración Propia.

Capas: 1


lluminación: flat

5.4 **COEFICIENTE DE PERDIDA DE ENERGIA**

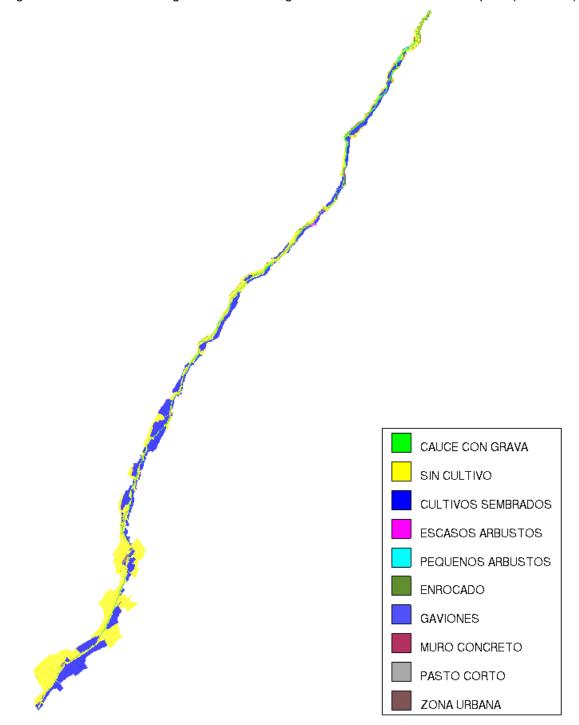
Nodos: 418K, Elementos: 819K

La información utilizada del coeficiente de rugosidad de Manning en IBER es la misma que fue utilizada en HEC-RAS. El mapa del coeficiente de rugosidad de Manning fue ingresa a IBER en archivo de extensión *.txt (tamaño pixel 1 m), asimismo el mapa cubre toda la superficie del terreno con mallado no estructural. Revisar Capítulo 8 para la determinación del coeficiente de rugosidad de Manning

Figura 38 Coeficiente de rugosidad de Manning ingresando al modelo

Nota: Información del modelo del tramo en estudio río Caplina (28.06 Km). Fuente: Elaboración Propia.

La siguiente figura muestra el mapa de coeficientes de rugosidades de Manning en el puente Piedra Blanca en la Av. Celestino Vargas.


Figura 39 Coeficiente de rugosidad de Manning en puente Piedra Blanca

Nota: Información del modelo del tramo en estudio río Caplina (28.06 Km). Fuente: Elaboración Propia.

La siguiente figura muestra el mapa de coeficientes de rugosidad de Manning utilizada para el modelamiento hidráulico.

Figura 40 Coeficientes de rugosidad de Manning de tramo en estudio del Rio Caplina (28.06 Km)

Nota: Información del modelo del tramo en estudio río Caplina (28.06 Km). Fuente: Elaboración Propia.

5.5 SIMULACIÓN HIDRÁULICA

Una vez realizado el modelamiento con el programa IBER se exporta al Software GIS para luego también volver a modelar con la información de parámetros de comportamiento hidráulico del Cauce del Rio Caplina. Los resultados de la superficie de inundación de la simulación hidráulica son mostrados en el mapa de anexos.

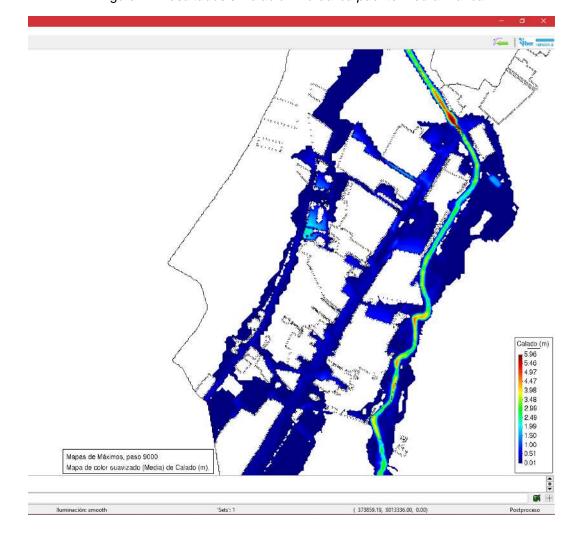


Figura 41 Resultados simulación hidráulica puente Piedra Blanca

Fuente: Estudio de Hidrología e Hidráulica Fluvial del Proyecto CUI 2476055 del GRT.

5.6 GENERACIÓN DE MAPAS DE INUNDACIÓN Y DELIMITACIÓN DEL LÍMITE SUPERIOR DE LA RIBERA

Para una mejor compresión de los mapas de inundación en la sección de anexos es añadido mapas de inundación de los 28.060 Km y además son mostrados a detalle por cada kilómetro con información de los vértices e hitos monumentados de la faja marginal.

6 DELIMITACIÓN DE LA FAJA MARGINAL

Según el "Reglamento para la Delimitación y Mantenimiento de Fajas Marginales" (R.J. Nº 332-2016-ANA) indica que la Autoridad Administrativa del Agua (AAA), es la autoridad competente para aprobar la delimitación de la faja marginal, en base a un estudio de delimitación que se desarrolla en el presente informe.

La Faja Marginal es el área inmediatamente superior al nivel alcanzado por la máxima creciente ordinario, es decir su límite inferior es la línea establecida por las cotas de la máxima creciente en secciones transversales continuas, dichas cotas máximas deben formar parte de la Huella Máxima.

Por otro parte la delimitación de la faja marginal tiene por objeto establecer las dimensiones y localización de las áreas y espacios destinados para las actividades y usos siguientes:

- Protección de los cursos fluviales y cuerpos de agua
- Vías de libre tránsito, caminos de acceso, vigilancia y/o mantenimiento de los cursos fluviales y cuerpos de agua.
- Áreas y accesos para las presas, reservorios, embalses, obras de captación y derivación, canales de riego. Obras de drenaje, entre otros.
- Áreas y acceso para la infraestructura de navegación y otros servicios.

Para determinar o delimitar el ancho de la Faja Marginal de los Cauces de la Quebrada en estudio, este se fija en función de las dimensiones del cauce o álveo de la mencionada quebrada (Mapa de Inundación correspondiente), el Reglamento recomienda una distancia mínima de:

Cauce del Rio Caplina: Cuatro (4) metros para tramos de ríos con pendiente alta (mayores a 2%) material conglomerado.

Tal y como se indica en el siguiente cuadro (Art.12 del Reglamento para la Delimitación y Mantenimiento de Fajas Marginales).

6.1 DIMENSIONAMIENTO DE LA FAJA MARGINAL

6.1.1 ANCHO MÍNIMO

El ancho mínimo de la faja marginal en el TRC fue establecido según el Artículo 12° del Capítulo III de la Resolución Jefatural N°332-2016-ANA Reglamento para la Delimitación y Mantenimiento de Fajas Marginales.

El Artículo 12° de criterios generales para determinar el ancho mínimo de la faja marginal manifiesta que "una vez determinado el límite superior de la ribera, se establecerá el ancho mínimo de la faja marginal, de acuerdo a lo señalado en el Cuadro N°01".

ID	Tipo de fuente	Ancho mínimo (m) ⁽¹⁾
1	Quebradas y tramos de ríos de alta pendiente (mayores a 2%) encañonados de material rocoso.	3
II	Quebradas y tramos de ríos de alta pendiente (mayores a 2%) material conglomerado.	4
III	Tramos de ríos con pendiente media (1-2%).	5
IV	Tramos de ríos con baja pendiente (menores a 1%) y presencia de defensas vivas.	6
V	Tramos de ríos con baja pendiente (menores a 1%) y riberas desprotegidas	10
VI	Tramos de ríos con estructuras de defensa ribera (gaviones, diques, enrocados, muros, etc.) medidos a partir del pie de talud externo.	4
VII	Tramos de ríos de selva con baja pendiente (menores a 1%).	25
VIII	Lagos y lagunas.	10
IX	Reservorios o embalses (cota de vertedero de demasías).	10

Nota: ⁽¹⁾ El ancho mínimo es medido a partir del límite superior de la ribera. Fuente: Resolución Jefatural N°332-2016-ANA Reglamento para la Delimitación y Mantenimiento de Fajas Marginales.

En el caso de la presente delimitación de faja marginal del cauce del Rio Caplina en estudio, se opta por utilizar las distancias indicadas para cada quebrada, a partir del mapa de inundación obtenido, debido a la presencia de pendientes medias con valores mayores a 2%, según el caso, siendo esta la propiedad fisiográfica real de la pendiente de la Quebrada en estudio, tal y como se presenta en los planos correspondientes.

Además, con el mencionado ancho de faja de terreno se pueden realizar actividades de protección y conservación de la fuente natural de agua, permitir el uso primario, libre tránsito y sobre todo salvaguardar la salud y la vida de las personas.

6.2 LIMITES DE LA FAJA MARGINAL

Se presentan los límites del cauce y de la faja marginal en coordenadas UTM WGS84.

6.2.1 LIMITES DE LA FAJA MARGINAL DEL CAUCE DEL RIO CAPLINA

A continuación, se presentan las coordenadas en UTM WGS84 de los vértices de la Faja Marginal del cauce del Rio Caplina, del margen derecho e izquierdo. Son propuestos 635 vértices en el margen derecho y 610 vértices en el margen izquierdo de la faja marginal.

Tabla 62 Ubicación de vértices de la Faja Marginal Margen Derecho en Coordenadas UTM WGS84 19 Sur

N° Vértice	Coordenadas		Cadificación
	Este X (M)	Norte Y (M)	Codificación
001	383866	8030621	R-RC-001
002	383825	8030602	R-RC-002
003	383812	8030543	R-RC-003
004	383814	8030491	R-RC-004
005	383758	8030452	R-RC-005
006	383727	8030397	R-RC-006
007	383683	8030373	R-RC-007
800	383648	8030349	R-RC-008
009	383639	8030286	R-RC-009
010	383621	8030253	R-RC-010

Fuente Elaboración Propia

La Información de la Tabla 63 *Ubicación de vértices de la Faja Marginal Margen Izquierda en Coordenadas UTM WGS84 19 Sur*Tabla 62 continua en el Anexo.

Tabla 63 Ubicación de vértices de la Faja Marginal Margen Izquierda en Coordenadas UTM WGS84 19 Sur

N° Vértice	Coordenadas		Codificación
	Este X (M)	Norte Y (M)	Codificación
001	383909	8030558	L-RC-001
002	383895	8030514	L-RC-002
003	383881	8030482	L-RC-003
004	383868	8030429	L-RC-004
005	383806	8030400	L-RC-005
006	383782	8030362	L-RC-006
007	383762	8030308	L-RC-007
800	383722	8030293	L-RC-008
009	383706	8030243	L-RC-009
010	383685	8030218	L-RC-010

Fuente Elaboración Propia

La información de la Tabla 63 continua en el Anexo.

6.2.2 HITOS MINIMOS A SER MONUMETADOS – CAUCE RIO CAPLINA

Se presentan la ubicación mínima de hitos para monumentar en coordenadas UTM WGS84 Zona 19 Sur y ubicados en los vértices de la faja marginal del Cauce del Rio Caplina. Son propuestos 29 hitos en el margen derecho e izquierdo.

Tabla 64 Ubicación de hitos monumentados en el límite de la faja marginal – Margen Derecho

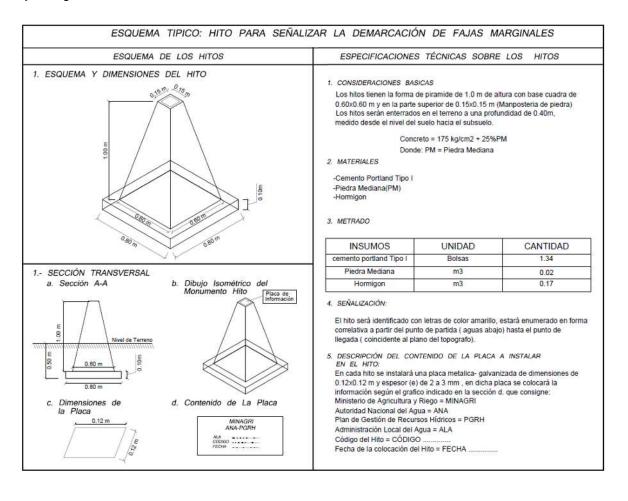
HITOS PARA EL MARGEN DERECHO DE LA FAJA MARGINAL			
Nº LUTO CODICO		UBICACIÓN	
N° HITO	CODIGO	ESTE - X (m)	NORTE - Y (m)
001	HR-RC-001	383900.9524	8030633.7609
002	HR-RC-002	383451.2068	8029784.4278
003	HR-RC-003	382888.9561	8029069.8424
004	HR-RC-004	382475.8211	8028188.6559
005	HR-RC-005	381983.0439	8027412.2060
006	HR-RC-006	381284.3738	8026698.7490
007	HR-RC-007	381109.7472	8025736.8997
800	HR-RC-008	381000.6120	8024860.5134
009	HR-RC-009	380432.9155	8024154.5947
010	HR-RC-010	379723.9050	8023487.0860
011	HR-RC-011	379056.8160	8022756.0307
012	HR-RC-012	378347.2407	8022101.8305
013	HR-RC-013	377507.6864	8021489.2924
014	HR-RC-014	377091.7090	8020598.3808
015	HR-RC-015	376483.1212	8019902.0339
016	HR-RC-016	376002.7898	8019014.9481
017	HR-RC-017	375634.4904	8018116.2778
018	HR-RC-018	375292.6277	8017208.6494
019	HR-RC-019	374659.3989	8016479.4063
020	HR-RC-020	374342.4297	8015534.9928
021	HR-RC-021	374115.4747	8014586.6585
022	HR-RC-022	373892.6276	8013624.7351
023	HR-RC-023	373803.0449	8012937.3595
024	HR-RC-024	373828.9790	8011818.4717
025	HR-RC-025	373474.1207	8010891.1510
026	HR-RC-026	372839.9704	8010156.6426
027	HR-RC-027	372213.4995	8009447.7208
028	HR-RC-028	371525.5277	8008728.9483
029	HR-RC-029	371094.6983	8007872.4857

Fuente Elaboración Propia

Tabla 65 Ubicación de monumentos en el límite de la faja marginal – Margen Izquierdo

HITOS PARA EL MARGEN IZQUIERDO DE LA FAJA MARGINAL			
N° HITO	CODICO	UBICACIÓN	
N HIIO	CODIGO	ESTE - X (m)	NORTE - Y (m)
001	HL-RC-001	383950.0393	8030595.6779
002	HL-RC-002	383533.7389	8029803.7583
003	HL-RC-003	382966.7652	8029006.7209
004	HL-RC-004	382537.5419	8028184.1129
005	HL-RC-005	382024.9458	8027341.8924
006	HL-RC-006	381335.5015	8026642.7998
007	HL-RC-007	381196.9735	8025748.8321
800	HL-RC-008	381022.5796	8024814.4783
009	HL-RC-009	380483.5644	8024085.4536
010	HL-RC-010	379763.8815	8023454.8518
011	HL-RC-011	379154.1835	8022663.5533
012	HL-RC-012	378378.8148	8022007.3873
013	HL-RC-013	377652.3543	8021398.0253
014	HL-RC-014	377206.6291	8020518.8264
015	HL-RC-015	376619.4396	8019665.6703
016	HL-RC-016	376049.9445	8018987.9955
017	HL-RC-017	375663.3702	8018083.6673
018	HL-RC-018	375361.5727	8017165.2635
019	HL-RC-019	374792.2768	8016373.1037
020	HL-RC-020	374431.5389	8015510.5980
021	HL-RC-021	374156.4487	8014577.8965
022	HL-RC-022	373976.3209	8013655.7965
023	HL-RC-023	374100.3619	8012736.4669
024	HL-RC-024	373881.5369	8011797.5754
025	HL-RC-025	373601.0450	8010829.8463
026	HL-RC-026	373229.0437	8009841.9643
027	HL-RC-027	372234.2972	8009410.3567
028	HL-RC-028	371787.1644	8008639.3395
029	HL-RC-029	371113.6254	8007855.6366

Fuente Elaboración Propia



6.2.3 HITOS DE CONCRETO

La colocación de Hitos es de carácter permanente, estos delimitarán el lindero exterior de la faja marginal.

Los hitos o señalización están diseñados de forma de tronco de pirámide y de material noble (concreto de resistencia a la compresión f'c = 175 Kg/cm2), de manera de que no se degraden, y su colocación debe garantizar su visibilidad y permanencia.

Los hitos se numerarán o codificarán de manera correlativa, según las progresivas existentes del curso fluvial (Punto Inicio Km 0+000) y en concordancia con el presente estudio de Delimitación de la Faja Marginal.

7 CONCLUSIONES Y RECOMENDACIONES

7.1 CONCLUSIONES

La modelización hidráulica de los 28.060 Km del cauce del río Caplina en estudio fue realizada con caudales correspondientes a tiempo de retorno de 100 años debido a la presencia de asentamiento humanos aledaños al cauce mencionado. Los caudales generados en las quebradas para el tiempo de retorno de 100 años fueron ingresando en las progresivas 28+060 (127.41 m3/s), 22+880 (4.34 m3/s), 19+140 (24.08 m3/s) y 16+460 (8.27 m3/s).

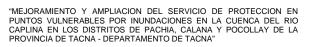
En la propuesta de delimitación de faja marginal fueron determinados 635 vértices (códigos R-RC-001 al R-RC-635) en el margen derecho y 610 vértices (códigos L-RC-001 al L-RC-610) en el margen izquierdo del cauce del río Caplina. Las coordenadas UTM con Datum WGS 84 son mostradas en la sección de anexos.

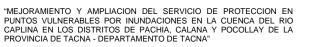
Con respecto a la monumentación de los hitos fueron determinados 29 hitos en el margen derecho (cogidos HR-RC-001 al HR-RC-029) y 29 hitos en el margen izquierdo (cogidos HL-RC-001 al HL-RC-029) del cauce del río Caplina. Las coordenadas UTM con Datum WGS 84 son mostradas en la sección de anexos.

7.2 RECOMENDACIONES

Se recomienda que la entidad estatal encargada de la monumentación de los hitos físicos ejecute de manera inmediata su instalación, para evitar que se vulneren los espacios de dominio público hidráulico. En el caso, que los hitos físicos estén en predios agrícolas o asentamiento humanos debe realizarse programas de sensibilización social sobre fajas marginales debido que son terrenos expuestos a inundaciones.

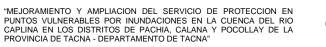
Posterior a la construcción de las obras de protección del Proyecto CUI 2476055 se recomienda actualizar la presente faja marginal propuesta considerando la presencia de obras de protección a lo largo del tramo en estudio del río Caplina.

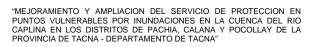

Posterior a la aprobación de la faja marginal debe prohibirse las actividades de asentamientos humanos, actividades agrícolas permanentes o intensivas, construcción de infraestructuras temporales o permanentes que interrumpan las descargas del río Caplina. Asimismo, prohibir las actividades de movimiento de tierras que no favorezcas la descolmatación del río Caplina.


FUENTES BIBLIOGRÁFICAS

- A. Castro, K. Correa, G. Avalos, P. Porras, V. Castro, L. Rodríguez, N. Quispe, K. Q. (2020). *Informe Técnico: Análisis del Periodo Lluvioso 2019/2020 a nivel nacional.* https://www.senamhi.gob.pe/load/file/01403SENA-36.pdf
- Alaska Satellite Facility. (s. f.). ALOS PALSAR Radiometric Terrain Correction. https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/
- Alfaro Lozano, L. (2014). Estimación de umbrales de precipitaciones extremas para la emisión de avisos meteorológico. Nota Técnica N° 001 SENAMHI-DGM-2014. https://repositorio.senamhi.gob.pe/handle/20.500.12542/345
- Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., & Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. *Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería*, 30(1), 1-10. https://www.sciencedirect.com/science/article/pii/S0213131512000454
- Cabrera, J. (2012). Modelos hidrológicos. http://www.imefen.uni.edu.pe/modhidro.htm
- Chow, V. Te, Maidment, D. R., Mays, L. W., Saldarriaga, J. G., & others. (1994). *Hidrología aplicada* (Número 551.48 C4H5).
- COEN. (2020). Precipitaciones Pluviales en las Provincias de Tacna. https://www.indeci.gob.pe/emergencias/
- Grayson, R., & Blöschl, G. (2001). Spatial patterns in catchment hydrology: observations and modelling. CUP Archive.
- Laurencelle, J., Logan, T., & Gens, R. (2015). ASF radiometrically terrain corrected ALOS PALSAR products. *Alaska Satellite Facility: Fairbanks, Alaska*.
- MTC. (2014). *Manual de Hidrología, Hidráulica y Drenaje*. https://portal.mtc.gob.pe/transportes/caminos/normas carreteras/manuales.html
- Naghettini, M. (2017). Fundamentals of statistical hydrology. Springer.
- Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009.
- OMM, E. (2011). Guía de prácticas hidrológicas. En *Volumen II: Gestión de recursos hídricos y aplicación de prácticas hidrológicas. OMM-Nº168.* (Sexta edic). http://www.whycos.org/hwrp/guide/index_es.php

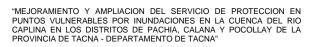
ANEXOS

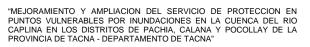

ANEXO I DATOS SENAMHI



GERENCIA DE
INFRAESTRUCTURA
SUB GERENCIA DE ESTUDIOS

GERENCIA DE INFRAESTRUCTURA SUB GERENCIA DE ESTUDIOS



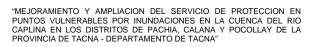

GERENCIA DE
INFRAESTRUCTURA
SUB GERENCIA DE ESTUDIOS

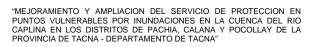
ANEXO II

ANALISIS DE PRECIPITACION MAXIMA 24 HORAS – CALCULOS HIDROLOGICOS PYTHON

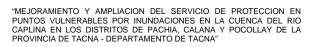
Fuente Estudio de Hidrología e Hidráulica del Proyecto CUI 2476055

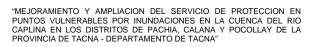
"MEJORAMIENTO Y AMPLIACION DEL SERVICIO DE PROTECCION EN PUNTOS VULNERABLES POR INUNDACIONES EN LA CUENCA DEL RIO CAPLINA EN LOS DISTRITOS DE PACHIA, CALANA Y POCOLLAY DE LA PROVINCIA DE TACNA - DEPARTAMENTO DE TACNA"

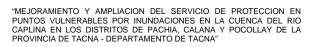

0094

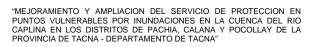


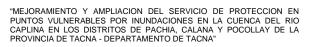
"MEJORAMIENTO Y AMPLIACION DEL SERVICIO DE PROTECCION EN PUNTOS VULNERABLES POR INUNDACIONES EN LA CUENCA DEL RIO CAPLINA EN LOS DISTRITOS DE PACHIA, CALANA Y POCOLLAY DE LA PROVINCIA DE TACNA - DEPARTAMENTO DE TACNA"


0091





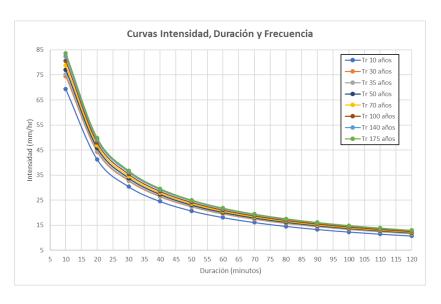




ററമ1

ANEXO III CURVAS IDF

Fuente Estudio de Hidrología e Hidráulica del Proyecto CUI 2476055

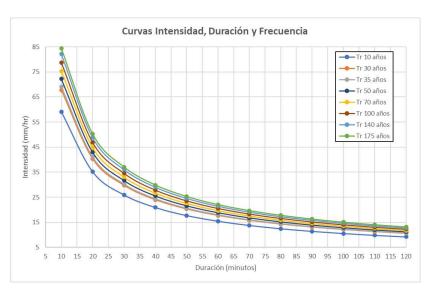

Tabla 66 Curva IDF – Estación Paucarani

Estadísticas de la regresión									
Coeficiente de correlación múltiple	0.99991516								
Coeficiente de determinación R^2	0.99983033								
R^2 ajustado	0.99982935								
Error típico	0.00712978								
Observaciones	350								

	ANÁLISIS DE VARIANZA											
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F							
Regresión	2	103.942521	51.9712605	1022376.79	0							
Residuos	347	0.01763932	5.0834E-05									
Total	349	103.96016										

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	2.52507333	0.001852721	1362.899889	0	2.521429354	2.52871731	2.52142935	2.52871731
Variable X 1	-0.75	0.000525702	-1426.665013	0	-0.751033962	-0.74896604	-0.75103396	-0.74896604
Variable X 2	0.065736032	0.000678719	96.85308325	2.9383E-253	0.064401111	0.06707095	0.06440111	0.06707095

DURA	CIÓN		PERÍODO DE RETORNO (años)								
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	69.31	74.50	75.26	77.05	78.77	80.64	82.44	83.66	89.64	93.82
0.33	20	41.21	44.30	44.75	45.81	46.84	47.95	49.02	49.74	53.30	55.78
0.50	30	30.41	32.68	33.02	33.80	34.56	35.38	36.17	36.70	39.32	41.16
0.67	40	24.51	26.34	26.61	27.24	27.85	28.51	29.15	29.58	31.69	33.17
0.83	50	20.73	22.28	22.51	23.04	23.56	24.12	24.66	25.02	26.81	28.06
1.00	60	18.08	19.43	19.63	20.10	20.55	21.03	21.50	21.82	23.38	24.47
1.17	70	16.11	17.31	17.49	17.90	18.30	18.74	19.16	19.44	20.83	21.80
1.33	80	14.57	15.66	15.82	16.20	16.56	16.95	17.33	17.59	18.84	19.72
1.50	90	13.34	14.34	14.48	14.83	15.16	15.52	15.87	16.10	17.25	18.06
1.67	100	12.33	13.25	13.38	13.70	14.01	14.34	14.66	14.88	15.94	16.68
1.83	110	11.48	12.33	12.46	12.76	13.04	13.35	13.65	13.85	14.84	15.53
2.00	120	10.75	11.56	11.67	11.95	12.22	12.51	12.79	12.98	13.90	14.55

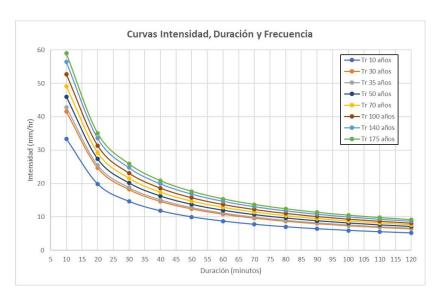

Tabla 67 Curva IDF – Estación Talabaya

Estadísticas de la regresión										
Coeficiente de correlación múltiple	0.999839325									
Coeficiente de determinación R^2	0.999678676									
R^2 ajustado	0.999676824									
Error típico	0.009870997									
Observaciones	350									

		ANÁLI	SIS DE VARIANZA		
	Grados de libertad	F	Valor crítico de F		
Regresión	2	105.188678	52.594339	539780.1684	0
Residuos	347	0.033810497	9.74366E-05		
Total	349	105.2224885			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	2.396437688	0.002565045	934.2674075	0	2.391392696	2.401482679	2.391392696	2.401482679
Variable X 1	-0.75	0.00072782	-1030.474163	0	-0.751431494	-0.748568506	-0.751431494	-0.748568506
Variable X 2	0.124955981	0.000939669	132.9787089	9.2503E-300	0.123107818	0.126804145	0.123107818	0.126804145

DURA	CIÓN				PERÍOD	O DE R	ETORN	O (año:	s)		
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	59.07	67.77	69.0	72.2	75.3	78.7	82.1	84.4	96.3	105.0
0.33	20	35.13	40.29	41.0	42.9	44.7	46.8	48.8	50.2	57.2	62.45
0.50	30	25.92	29.73	30.3	31.6	33.0	34.5	36.0	37.0	42.2	46.07
0.67	40	20.89	23.96	24.4	25.5	26.6	27.8	29.0	29.8	34.0	37.13
0.83	50	17.67	20.27	20.6	21.6	22.5	23.5	24.5	25.2	28.8	31.41
1.00	60	15.41	17.68	18.0	18.8	19.6	20.5	21.4	22.0	25.1	27.40
1.17	70	13.73	15.75	16.0	16.7	17.5	18.3	19.0	19.6	22.3	24.41
1.33	80	12.42	14.25	14.5	15.1	15.8	16.5	17.2	17.7	20.2	22.08
1.50	90	11.37	13.04	13.3	13.9	14.5	15.1	15.8	16.2	18.5	20.21
1.67	100	10.50	12.05	12.2	12.8	13.4	14.0	14.6	15.0	17.1	18.68
1.83	110	9.78	11.22	11.4	11.9	12.4	13.0	13.6	13.9	15.9	17.39
2.00	120	9.16	10.51	10.7	11.2	11.6	12.2	12.7	13.1	14.9	16.29

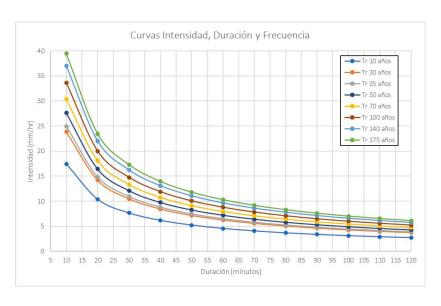

Tabla 68 Curva IDF – Estación Palca, Subcuencas W600, W620, W640, W660, W670, W700, W720

Estadísticas de la regresión	Estadísticas de la regresión									
Coeficiente de correlación múltiple	0.9999573									
Coeficiente de determinación R^2	0.999914602									
R^2 ajustado	0.99991411									
Error típico	0.005151733									
Observaciones	350									

		ANÁLI	SIS DE VARIANZA		
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	107.8332296	53.91661482	2031496.141	0
Residuos	347	0.009209501	2.65403E-05		
Total	349	107.8424391			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	2.074300145	0.001338712	1549.474331	0	2.071667134	2.076933157	2.071667134	2.076933157
Variable X 1	-0.75	0.000379854	-1974.444078	0	-0.750747105	-0.749252895	-0.750747105	-0.749252895
Variable X 2	0.198945044	0.000490419	405.663486	0	0.197980477	0.199909612	0.197980477	0.199909612

DURA	CIÓN			F	PERÍOD	O DE R	ETORN	O (años	5)		
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	33.36	41.51	42.80	45.95	49.13	52.75	56.40	58.96	72.65	83.39
0.33	20	19.84	24.68	25.45	27.32	29.21	31.36	33.53	35.06	43.20	49.59
0.50	30	14.64	18.21	18.78	20.16	21.55	23.14	24.74	25.86	31.87	36.58
0.67	40	11.80	14.68	15.13	16.25	17.37	18.65	19.94	20.84	25.69	29.48
0.83	50	9.98	12.41	12.80	13.74	14.69	15.77	16.87	17.63	21.73	24.94
1.00	60	8.70	10.83	11.17	11.99	12.82	13.76	14.71	15.38	18.95	21.75
1.17	70	7.75	9.65	9.95	10.68	11.42	12.26	13.11	13.70	16.88	19.38
1.33	80	7.01	8.73	9.00	9.66	10.33	11.09	11.86	12.39	15.27	17.53
1.50	90	6.42	7.99	8.24	8.84	9.46	10.15	10.85	11.35	13.98	16.05
1.67	100	5.93	7.38	7.61	8.17	8.74	9.38	10.03	10.48	12.92	14.83
1.83	110	5.52	6.87	7.09	7.61	8.13	8.73	9.34	9.76	12.03	13.81
2.00	120	5.17	6.44	6.64	7.13	7.62	8.18	8.75	9.14	11.27	12.93

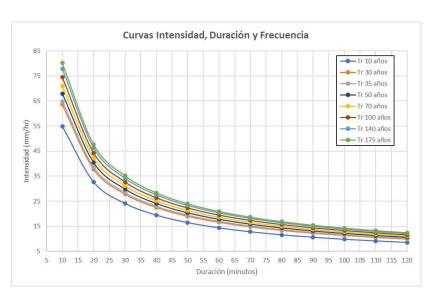

Tabla 69 Curva IDF – Estación Calientes, Subcuencas W740,W760,W770,W780

Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.999875916							
Coeficiente de determinación R^2	0.999751847							
R^2 ajustado	0.999750417							
Error típico	0.008967649							
Observaciones	350							

	ANÁLISIS DE VARIANZA												
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F								
Regresión	2	112.4240685	56.21203425	698991.844	0								
Residuos	347	0.027905298	8.04187E-05										
Total	349	112.4519738											

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	1.707018715	0.002330304	732.5306174	0	1.702435418	1.711602012	1.702435418	1.711602012
Variable X 1	-0.75	0.000661214	-1134.278104	0	-0.751300491	-0.748699509	-0.751300491	-0.748699509
Variable X 2	0.284923973	0.000853675	333.7616979	0	0.283244945	0.286603002	0.283244945	0.286603002

DURA	CIÓN			F	PERÍOD	O DE R	ETORN	O (años	5)		
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	17.46	23.87	24.94	27.61	30.39	33.64	37.03	39.46	53.21	64.83
0.33	20	10.38	14.19	14.83	16.42	18.07	20.00	22.02	23.46	31.64	38.55
0.50	30	7.66	10.47	10.94	12.11	13.33	14.76	16.24	17.31	23.34	28.44
0.67	40	6.17	8.44	8.82	9.76	10.74	11.89	13.09	13.95	18.81	22.92
0.83	50	5.22	7.14	7.46	8.26	9.09	10.06	11.07	11.80	15.91	19.39
1.00	60	4.55	6.23	6.51	7.20	7.93	8.78	9.66	10.29	13.88	16.91
1.17	70	4.06	5.55	5.80	6.42	7.06	7.82	8.60	9.17	12.37	15.06
1.33	80	3.67	5.02	5.24	5.80	6.39	7.07	7.78	8.29	11.19	13.63
1.50	90	3.36	4.59	4.80	5.31	5.85	6.47	7.13	7.59	10.24	12.48
1.67	100	3.10	4.25	4.44	4.91	5.40	5.98	6.58	7.02	9.46	11.53
1.83	110	2.89	3.95	4.13	4.57	5.03	5.57	6.13	6.53	8.81	10.73
2.00	120	2.71	3.70	3.87	4.28	4.71	5.22	5.74	6.12	8.25	10.06

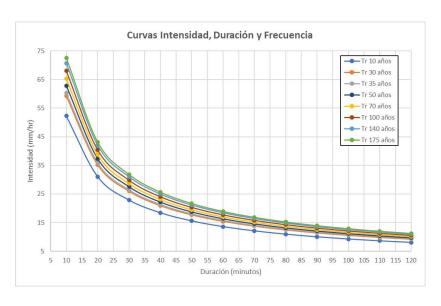

Tabla 70 Curva IDF – Subcuenca W520

Estadísticas de la regresión										
Coeficiente de correlación múltiple	0.999868945									
Coeficiente de determinación R^2	0.999737907									
R^2 ajustado	0.999736396									
Error típico	0.008923242									
Observaciones	350									

		ANÁLI	SIS DE VARIANZA		
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	105.391424	52.69571202	661804.8559	0
Residuos	347	0.027629613	7.96242E-05		
Total	349	105.4190537			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	2.357646494	0.002318764	1016.768586	0	2.353085894	2.362207095	2.353085894	2.362207095
Variable X 1	-0.75	0.000657939	-1139.922909	0	-0.751294051	-0.748705949	-0.751294051	-0.748705949
Variable X 2	0.13210336	0.000849448	155.5167961	0	0.130432646	0.133774074	0.130432646	0.133774074

DUR	ACIÓ				PERÍOD	O DE R	ETORN	IO (año:	s)		
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	54.9	63.5	64.8	67.9	71.0	74.4	77.8	80.1	92.0	100.9
0.33	20	32.6	37.7	38.5	40.3	42.2	44.2	46.2	47.6	54.7	60.00
0.50	30	24.0	27.8	28.4	29.8	31.1	32.6	34.1	35.1	40.4	44.27
0.67	40	19.4	22.4	22.9	24.0	25.1	26.3	27.5	28.3	32.5	35.68
0.83	50	16.4	18.9	19.3	20.3	21.2	22.2	23.2	23.9	27.5	30.18
1.00	60	14.3	16.5	16.9	17.7	18.5	19.4	20.3	20.9	24.0	26.32
1.17	70	12.7	14.7	15.0	15.7	16.5	17.3	18.0	18.6	21.4	23.45
1.33	80	11.5	13.3	13.6	14.2	14.9	15.6	16.3	16.8	19.3	21.21
1.50	90	10.5	12.2	12.4	13.0	13.6	14.3	14.9	15.4	17.7	19.42
1.67	100	9.77	11.2	11.5	12.0	12.6	13.2	13.8	14.2	16.3	17.95
1.83	110	9.09	10.5	10.7	11.2	11.7	12.3	12.8	13.2	15.2	16.71
2.00	120	8.52	9.85	10.0	10.5	11.0	11.5	12.0	12.4	14.2	15.65

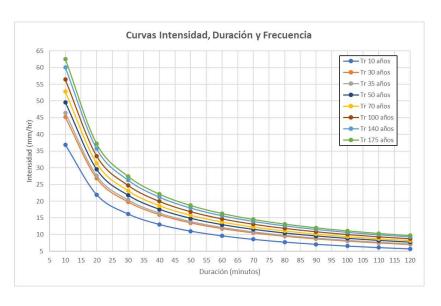

Tabla 71 Curva IDF - Subcuenca W580

Estadísticas de la regresión									
Coeficiente de correlación múltiple	0.999961525								
Coeficiente de determinación R^2	0.999923051								
R^2 ajustado	0.999922607								
Error típico	0.004823641								
Observaciones	350								

		ANÁLIS	IS DE VARIANZA		
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	104.9159449	52.45797247	2254558.5	0
Residuos	347	0.008073828	2.32675E-05		
Total	349	104.9240188			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	2.35337791	0.001253455	1877.512221	0	2.350912584	2.355843236	2.350912584	2.355843236
Variable X 1	-0.75	0.000355663	-2108.74055	0	-0.750699526	-0.749300474	-0.750699526	-0.749300474
Variable X 2	0.114640608	0.000459186	249.660355	0	0.113737469	0.115543746	0.113737469	0.115543746

DURA	CIÓN			F	PERÍOD	O DE R	ETORN	O (años	5)		
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	52.24	59.25	60.31	62.83	65.30	68.02	70.70	72.53	81.81	88.57
0.33	20	31.06	35.23	35.86	37.36	38.83	40.45	42.04	43.13	48.64	52.67
0.50	30	22.92	25.99	26.46	27.56	28.65	29.84	31.01	31.82	35.89	38.86
0.67	40	18.47	20.95	21.32	22.21	23.09	24.05	25.00	25.64	28.92	31.32
0.83	50	15.62	17.72	18.04	18.79	19.53	20.34	21.14	21.69	24.47	26.49
1.00	60	13.63	15.46	15.73	16.39	17.03	17.74	18.44	18.92	21.34	23.10
1.17	70	12.14	13.77	14.01	14.60	15.17	15.81	16.43	16.85	19.01	20.58
1.33	80	10.98	12.46	12.68	13.21	13.73	14.30	14.86	15.25	17.20	18.62
1.50	90	10.05	11.40	11.61	12.09	12.57	13.09	13.61	13.96	15.74	17.05
1.67	100	9.29	10.54	10.72	11.17	11.61	12.10	12.57	12.90	14.55	15.75
1.83	110	8.65	9.81	9.98	10.40	10.81	11.26	11.70	12.01	13.54	14.66
2.00	120	8.10	9.19	9.35	9.74	10.13	10.55	10.97	11.25	12.69	13.74

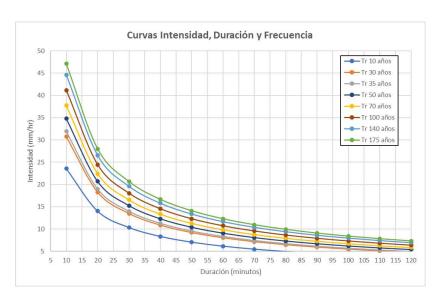

Tabla 72 Curva IDF – Subcuenca W610

Estadísticas de la regresión									
Coeficiente de correlación múltiple	0.999946236								
Coeficiente de determinación R^2	0.999892474								
R^2 ajustado	0.999891855								
Error típico	0.005764604								
Observaciones	350								

		ANÁLI	SIS DE VARIANZA		
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	107.2284881	53.61424405	1613397.048	0
Residuos	347	0.011531038	3.32307E-05		
Total	349	107.2400191			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	2.132193908	0.001497971	1423.388097	0	2.129247663	2.135140153	2.129247663	2.135140153
Variable X 1	-0.75	0.000425043	-1764.528515	0	-0.750835984	-0.749164016	-0.750835984	-0.749164016
Variable X 2	0.184658917	0.000548761	336.501435	0	0.1835796	0.185738234	0.1835796	0.185738234

DURA	CIÓN			F	PERÍOD	O DE R	ETORN	O (años	5)		
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	36.89	45.18	46.49	49.65	52.83	56.43	60.05	62.57	75.96	86.33
0.33	20	21.93	26.86	27.64	29.52	31.41	33.55	35.70	37.21	45.17	51.33
0.50	30	16.18	19.82	20.39	21.78	23.18	24.76	26.34	27.45	33.32	37.87
0.67	40	13.04	15.97	16.44	17.55	18.68	19.95	21.23	22.12	26.86	30.52
0.83	50	11.03	13.51	13.90	14.85	15.80	16.88	17.96	18.71	22.72	25.82
1.00	60	9.62	11.79	12.13	12.95	13.78	14.72	15.66	16.32	19.81	22.52
1.17	70	8.57	10.50	10.80	11.54	12.28	13.11	13.95	14.54	17.65	20.06
1.33	80	7.75	9.50	9.77	10.44	11.11	11.86	12.62	13.15	15.97	18.15
1.50	90	7.10	8.70	8.95	9.56	10.17	10.86	11.56	12.04	14.62	16.61
1.67	100	6.56	8.03	8.27	8.83	9.40	10.03	10.68	11.13	13.51	15.35
1.83	110	6.11	7.48	7.70	8.22	8.75	9.34	9.94	10.36	12.58	14.29
2.00	120	5.72	7.01	7.21	7.70	8.19	8.75	9.31	9.71	11.78	13.39

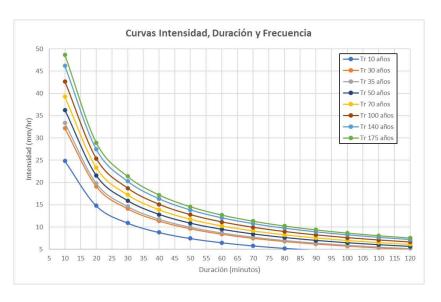

Tabla 73 Curva IDF – Subcuenca W710

Estadísticas de la regresión									
Coeficiente de correlación múltiple	0.999938866								
Coeficiente de determinación R^2	0.999877735								
R^2 ajustado	0.999877031								
Error típico	0.006223584								
Observaciones	350								

		ANÁLI	SIS DE VARIANZA		
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	109.9149558	54.95747791	1418879.927	0
Residuos	347	0.013440351	3.8733E-05		
Total	349	109.9283962			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	1.88094043	0.00161724	1163.055831	0	1.877759604	1.884121257	1.877759604	1.884121257
Variable X 1	-0.75	0.000458885	-1634.397054	0	-0.750902546	-0.749097454	-0.750902546	-0.749097454
Variable X 2	0.241751723	0.000592454	408.0516183	0	0.240586471	0.242916975	0.240586471	0.242916975

DURA	CIÓN			F	PERÍOD	O DE R	ETORN	O (años	s)		
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	23.59	30.76	31.93	34.81	37.76	41.16	44.64	47.12	60.73	71.81
0.33	20	14.03	18.29	18.99	20.70	22.45	24.47	26.55	28.02	36.11	42.70
0.50	30	10.35	13.50	14.01	15.27	16.56	18.06	19.59	20.67	26.64	31.50
0.67	40	8.34	10.88	11.29	12.31	13.35	14.55	15.78	16.66	21.47	25.39
0.83	50	7.05	9.20	9.55	10.41	11.29	12.31	13.35	14.09	18.16	21.48
1.00	60	6.15	8.02	8.33	9.08	9.85	10.74	11.65	12.29	15.84	18.73
1.17	70	5.48	7.15	7.42	8.09	8.77	9.56	10.37	10.95	14.11	16.69
1.33	80	4.96	6.47	6.71	7.32	7.94	8.65	9.39	9.91	12.77	15.10
1.50	90	4.54	5.92	6.15	6.70	7.27	7.92	8.59	9.07	11.69	13.82
1.67	100	4.19	5.47	5.68	6.19	6.71	7.32	7.94	8.38	10.80	12.77
1.83	110	3.91	5.09	5.29	5.76	6.25	6.81	7.39	7.80	10.05	11.89
2.00	120	3.66	4.77	4.95	5.40	5.86	6.38	6.92	7.31	9.42	11.14

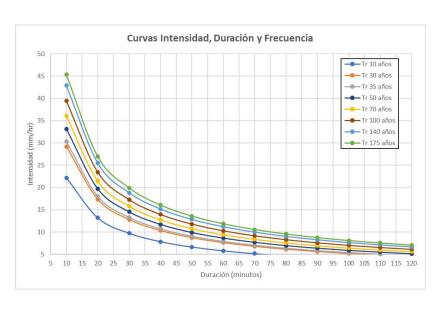

Tabla 74 Curva IDF – Subcuenca W730

Estadísticas de la regresión									
Coeficiente de correlación múltiple	0.999944412								
Coeficiente de determinación R^2	0.999888827								
R^2 ajustado	0.999888186								
Error típico	0.005924743								
Observaciones	350								

		ANÁLI	SIS DE VARIANZA		
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	109.5523248	54.77616238	1560459.975	0
Residuos	347	0.012180593	3.51026E-05		
Total	349	109.5645053			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	1.910542326	0.001539584	1240.947119	0	1.907514235	1.913570417	1.907514235	1.913570417
Variable X 1	-0.75	0.00043685	-1716.835407	0	-0.750859208	-0.749140792	-0.750859208	-0.749140792
Variable X 2	0.234856775	0.000564006	416.4086181	0	0.233747475	0.235966074	0.233747475	0.235966074

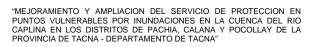
DURA	CIÓN			F	PERÍOD	O DE R	ETORN	O (años	·)		
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	24.85	32.17	33.36	36.27	39.25	42.68	46.19	48.68	62.29	73.30
0.33	20	14.78	19.13	19.83	21.57	23.34	25.38	27.47	28.94	37.04	43.59
0.50	30	10.90	14.11	14.63	15.91	17.22	18.72	20.26	21.35	27.33	32.16
0.67	40	8.79	11.37	11.79	12.82	13.88	15.09	16.33	17.21	22.02	25.92
0.83	50	7.43	9.62	9.98	10.85	11.74	12.77	13.81	14.56	18.63	21.92
1.00	60	6.48	8.39	8.70	9.46	10.24	11.13	12.05	12.70	16.25	19.12
1.17	70	5.78	7.48	7.75	8.43	9.12	9.92	10.73	11.31	14.47	17.03
1.33	80	5.22	6.76	7.01	7.62	8.25	8.97	9.71	10.23	13.09	15.41
1.50	90	4.78	6.19	6.42	6.98	7.55	8.21	8.89	9.37	11.99	14.11
1.67	100	4.42	5.72	5.93	6.45	6.98	7.59	8.21	8.66	11.08	13.04
1.83	110	4.11	5.33	5.52	6.00	6.50	7.07	7.65	8.06	10.31	12.14
2.00	120	3.85	4.99	5.17	5.63	6.09	6.62	7.16	7.55	9.66	11.37

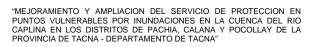

Tabla 75 Curva IDF – Subcuenca W750

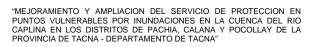
Estadísticas de la regresión								
Coeficiente de correlación múltiple	0.999931283							
Coeficiente de determinación R^2	0.99986257							
R^2 ajustado	0.999861778							
Error típico	0.006612171							
Observaciones	350							

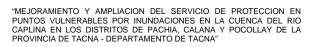
ANÁLISIS DE VARIANZA										
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F					
Regresión	2	110.3765232	55.18826159	1262288.466	0					
Residuos	347	0.015171118	4.37208E-05							
Total	349	110.3916943								

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	1.845361161	0.001718217	1073.997874	0	1.841981731	1.848740591	1.841981731	1.848740591
Variable X 1	-0.75	0.000487537	-1538.346244	0	-0.750958899	-0.749041101	-0.750958899	-0.749041101
Variable X 2	0.250253182	0.000629445	397.5773724	0	0.249015174	0.25149119	0.249015174	0.25149119

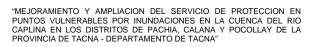

DURA	CIÓN			F	PERÍOD	O DE R	ETORN	O (años	s)		
Hr	min	10	30	35	50	70	100	140	175	500	1000
0.17	10	22.16	29.18	30.32	33.15	36.07	39.43	42.90	45.36	58.99	70.17
0.33	20	13.18	17.35	18.03	19.71	21.45	23.45	25.51	26.97	35.08	41.72
0.50	30	9.72	12.80	13.30	14.54	15.82	17.30	18.82	19.90	25.88	30.78
0.67	40	7.84	10.32	10.72	11.72	12.75	13.94	15.17	16.04	20.86	24.81
0.83	50	6.63	8.73	9.07	9.92	10.79	11.79	12.83	13.57	17.64	20.98
1.00	60	5.78	7.61	7.91	8.65	9.41	10.29	11.19	11.83	15.39	18.30
1.17	70	5.15	6.78	7.05	7.70	8.38	9.16	9.97	10.54	13.71	16.30
1.33	80	4.66	6.13	6.37	6.97	7.58	8.29	9.02	9.54	12.40	14.75
1.50	90	4.27	5.61	5.84	6.38	6.94	7.59	8.26	8.73	11.35	13.50
1.67	100	3.94	5.19	5.39	5.90	6.41	7.01	7.63	8.07	10.49	12.48
1.83	110	3.67	4.83	5.02	5.49	5.97	6.53	7.10	7.51	9.77	11.62
2.00	120	3.44	4.53	4.70	5.14	5.59	6.12	6.65	7.04	9.15	10.88


ANEXO IV CERTIFICADO DE PUNTOS GEODÉSICOS





"MEJORAMIENTO Y AMPLIACION DEL SERVICIO DE PROTECCION EN PUNTOS VULNERABLES POR INUNDACIONES EN LA CUENCA DEL RIO CAPLINA EN LOS DISTRITOS DE PACHIA, CALANA Y POCOLLAY DE LA PROVINCIA DE TACNA - DEPARTAMENTO DE TACNA"


0061

ANEXO V UBICACIÓN DE LOS VÉRTICES DE LA FAJA MARGINAL

VERTI	VERTICES FAJA MARGINAL MARGEN DERECHO			VERT	ICES FAJA MAI	RGINAL MARGEN	IZQUIERDO
N°	COORD	ENADAS		N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN
001	383865.6402	8030621.2054	R-RC-001	001	383909.1611	8030558.3716	L-RC-001
002	383825.4030	8030602.2718	R-RC-002	002	383895.3287	8030514.3704	L-RC-002
003	383811.9860	8030542.8102	R-RC-003	003	383880.7349	8030482.4294	L-RC-003
004	383814.1380	8030491.2902	R-RC-004	004	383868.1242	8030429.3340	L-RC-004
005	383758.0771	8030452.1902	R-RC-005	005	383805.9470	8030400.4944	L-RC-005
006	383726.5663	8030397.3738	R-RC-006	006	383782.2006	8030362.3061	L-RC-006
007	383682.6707	8030373.1457	R-RC-007	007	383761.7641	8030307.7014	L-RC-007
800	383648.2748	8030349.0025	R-RC-008	800	383722.1400	8030293.4614	L-RC-008
009	383638.9491	8030286.1144	R-RC-009	009	383706.1096	8030243.1133	L-RC-009
010	383620.7848	8030252.5450	R-RC-010	010	383684.8073	8030217.9491	L-RC-010
011	383581.8686	8030203.0269	R-RC-011	011	383641.0980	8030186.8164	L-RC-011
012	383573.2430	8030142.5353	R-RC-012	012	383629.1388	8030138.9973	L-RC-012
013	383562.2611	8030095.5101	R-RC-013	013	383618.1321	8030069.9938	L-RC-013
014	383538.7745	8030067.2422	R-RC-014	014	383569.2370	8030010.7623	L-RC-014
015	383508.2526	8030044.6329	R-RC-015	015	383555.1082	8029913.8894	L-RC-015
016	383487.0859	8030003.5695	R-RC-016	016	383528.9674	8029843.4042	L-RC-016
017	383503.0419	8029934.6702	R-RC-017	017	383539.7624	8029753.6574	L-RC-017
018	383444.9314	8029879.9258	R-RC-018	018	383542.9507	8029703.7164	L-RC-018
019	383440.8193	8029840.0247	R-RC-019	019	383553.8118	8029663.7209	L-RC-019
020	383479.6312	8029708.8138	R-RC-020	020	383559.7385	8029626.0442	L-RC-020
021	383478.0900	8029669.5588	R-RC-021	021	383535.8189	8029601.7425	L-RC-021
022	383457.1879	8029640.9838	R-RC-022	022	383503.2567	8029578.1810	L-RC-022
023	383394.7658	8029604.4247	R-RC-023	023	383476.5533	8029557.8874	L-RC-023
024	383344.2106	8029587.2732	R-RC-024	024	383450.2378	8029547.5955	L-RC-024
025	383285.2084	8029563.9899	R-RC-025	025	383414.8365	8029522.3542	L-RC-025
026	383262.9833	8029530.3877	R-RC-026	026	383398.1677	8029491.8741	L-RC-026
027	383250.1979	8029485.8419	R-RC-027	027	383383.6314	8029469.4105	L-RC-027
028	383220.8626	8029449.7159	R-RC-028	028	383346.2192	8029445.1062	L-RC-028
029	383149.5090	8029430.3739	R-RC-029	029	383327.5397	8029419.2454	L-RC-029
030	383105.0178	8029390.0087	R-RC-030	030	383304.0446	8029387.0720	L-RC-030
031	383047.3475	8029356.2915	R-RC-031	031	383274.1996	8029363.1536	L-RC-031
032	383015.5974	8029331.9498	R-RC-032	032	383230.3845	8029344.3153	L-RC-032
033	382992.3669	8029286.1858	R-RC-033	033	383192.2844	8029326.3236	L-RC-033
034	382971.7206	8029234.2974	R-RC-034	034	383155.0310	8029304.7335	L-RC-034
035	382961.3577	8029185.1058	R-RC-035	035	383109.6257	8029278.0375	L-RC-035
036	382944.5004	8029143.9096	R-RC-036	036	383068.0871	8029248.0207	L-RC-036
037	382838.6825	8029006.0176	R-RC-037	037	383040.3048	8029216.3894	L-RC-037

GERENCIA DE INFRAESTRUCTURA SUB GERENCIA DE ESTUDIOS

VERTI	VERTICES FAJA MARGINAL MARGEN DERECHO			VERT	ICES FAJA MA	RGINAL MARGEN	IZQUIERDO
N°	COORD	ENADAS		N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN
038	382805.8265	8028960.4531	R-RC-038	038	383031.9117	8029169.8191	L-RC-038
039	382773.2827	8028884.2530	R-RC-039	039	383023.5831	8029122.0917	L-RC-039
040	382768.1454	8028837.3764	R-RC-040	040	383019.9847	8029090.7650	L-RC-040
041	382736.6608	8028793.4686	R-RC-041	041	383009.4014	8029049.7016	L-RC-041
042	382697.7670	8028741.8748	R-RC-042	042	382904.1896	8028946.5800	L-RC-042
043	382666.9085	8028678.5406	R-RC-043	043	382878.5844	8028903.4291	L-RC-043
044	382647.4616	8028616.6280	R-RC-044	044	382854.4412	8028850.1816	L-RC-044
045	382624.8397	8028552.3341	R-RC-045	045	382875.2494	8028796.3784	L-RC-045
046	382596.2646	8028496.7715	R-RC-046	046	382843.1660	8028733.6557	L-RC-046
047	382584.4639	8028450.3545	R-RC-047	047	382787.2180	8028690.1001	L-RC-047
048	382547.7479	8028391.0366	R-RC-048	048	382738.5495	8028641.7657	L-RC-048
049	382515.0221	8028335.9692	R-RC-049	049	382702.2116	8028583.3884	L-RC-049
050	382489.8040	8028275.5457	R-RC-050	050	382668.1596	8028511.3687	L-RC-050
051	382463.3170	8028118.7531	R-RC-051	051	382634.5681	8028411.5778	L-RC-051
052	382454.0852	8028055.6765	R-RC-052	052	382623.5704	8028368.5036	L-RC-052
053	382414.7945	8027993.7639	R-RC-053	053	382560.3523	8028284.5775	L-RC-053
054	382370.7413	8027938.2013	R-RC-054	054	382540.0481	8028242.1017	L-RC-054
055	382312.4006	8027892.9575	R-RC-055	055	382546.9104	8028143.3151	L-RC-055
056	382258.1600	8027861.4589	R-RC-056	056	382541.0104	8028086.1724	L-RC-056
057	382218.4503	8027805.5446	R-RC-057	057	382518.8430	8028043.7829	L-RC-057
058	382180.3723	8027744.3805	R-RC-058	058	382496.5319	8027980.2476	L-RC-058
059	382136.1113	8027675.4934	R-RC-059	059	382474.3784	8027952.8057	L-RC-059
060	382118.3690	8027626.3746	R-RC-060	060	382446.9530	8027929.4596	L-RC-060
061	382111.4147	8027589.6457	R-RC-061	061	382420.0492	8027892.9558	L-RC-061
062	382106.9168	8027552.8685	R-RC-062	062	382392.0160	8027870.4131	L-RC-062
063	382073.0501	8027495.1893	R-RC-063	063	382362.1287	8027832.7375	L-RC-063
064	382039.5141	8027457.0230	R-RC-064	064	382338.5688	8027809.5773	L-RC-064
065	381940.4820	8027351.0486	R-RC-065	065	382318.5837	8027775.5656	L-RC-065
066	381906.1091	8027297.5436	R-RC-066	066	382290.0179	8027736.8673	L-RC-066
067	381875.9465	8027238.4091	R-RC-067	067	382252.5526	8027697.7999	L-RC-067
068	381834.2746	8027188.0058	R-RC-068	068	382237.3125	8027650.1748	L-RC-068
069	381760.4777	8027091.5198	R-RC-069	069	382241.0677	8027616.1739	L-RC-069
070	381631.0962	8026991.5071	R-RC-070	070	382217.3334	8027583.0422	L-RC-070
071	381534.6554	8026922.0539	R-RC-071	071	382203.3334	8027549.0422	L-RC-071
072	381446.8952	8026847.0284	R-RC-072	072	382180.0301	8027513.7685	L-RC-072
073	381381.4613	8026785.1317	R-RC-073	073	382169.7661	8027465.7641	L-RC-073
074	381328.2023	8026738.6404	R-RC-074	074	382139.2379	8027444.4068	L-RC-074

VERTI	VERTICES FAJA MARGINAL MARGEN DERECHO			VERTICES FAJA MARGINAL MARGEN IZQUIERDO				
N°	COORD	ENADAS		N°	COORI	DENADAS		
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	
075	381242.1529	8026674.5427	R-RC-075	075	382120.3097	8027413.7445	L-RC-075	
076	381163.1444	8026603.1520	R-RC-076	076	382064.3310	8027379.2180	L-RC-076	
077	381109.2046	8026530.7343	R-RC-077	077	381990.9585	8027319.9344	L-RC-077	
078	381096.3370	8026443.7403	R-RC-078	078	381972.2187	8027295.0873	L-RC-078	
079	381125.4412	8026365.6880	R-RC-079	079	381972.0961	8027262.0860	L-RC-079	
080	381147.5476	8026273.9857	R-RC-080	080	381964.5398	8027230.5480	L-RC-080	
081	381134.8030	8026167.0307	R-RC-081	081	381923.2125	8027196.4700	L-RC-081	
082	381134.0093	8026087.2587	R-RC-082	082	381894.9013	8027155.4061	L-RC-082	
083	381133.2155	8026032.4898	R-RC-083	083	381864.3657	8027124.7521	L-RC-083	
084	381121.3093	8025975.7366	R-RC-084	084	381840.9514	8027090.2160	L-RC-084	
085	381112.1416	8025910.0497	R-RC-085	085	381803.3673	8027038.9661	L-RC-085	
086	381100.6717	8025864.2145	R-RC-086	086	381745.3705	8026998.5377	L-RC-086	
087	381098.3213	8025798.8171	R-RC-087	087	381695.4171	8026958.7443	L-RC-087	
088	381126.4484	8025666.0946	R-RC-088	088	381660.2948	8026940.7196	L-RC-088	
089	381112.6900	8025602.5944	R-RC-089	089	381611.6775	8026916.5763	L-RC-089	
090	381074.0608	8025522.1609	R-RC-090	090	381586.5421	8026886.8106	L-RC-090	
091	381049.9704	8025428.2436	R-RC-091	091	381557.7076	8026856.4678	L-RC-091	
092	381056.9157	8025355.8137	R-RC-092	092	381529.7326	8026824.7072	L-RC-092	
093	381034.0954	8025295.2902	R-RC-093	093	381474.2464	8026778.5154	L-RC-093	
094	381037.3590	8025246.6317	R-RC-094	094	381430.2261	8026729.1128	L-RC-094	
095	381077.5400	8025214.3143	R-RC-095	095	381386.6887	8026680.2135	L-RC-095	
096	381100.6118	8025187.2209	R-RC-096	096	381280.2863	8026587.1694	L-RC-096	
097	381103.3634	8025157.3759	R-RC-097	097	381345.0022	8026568.3772	L-RC-097	
098	381061.9251	8025093.6466	R-RC-098	098	381421.6257	8026549.8167	L-RC-098	
099	381060.6424	8025050.0459	R-RC-099	099	381504.4933	8026522.7101	L-RC-099	
100	381062.2718	8025010.0264	R-RC-100	100	381560.6790	8026515.2687	L-RC-100	
101	381039.7822	8024968.3545	R-RC-101	101	381655.1354	8026503.7593	L-RC-101	
102	381042.2803	8024918.3294	R-RC-102	102	381739.6700	8026485.8999	L-RC-102	
103	381033.8290	8024892.9481	R-RC-103	103	381730.4007	8026443.9413	L-RC-103	
104	381022.9127	8024872.0008	R-RC-104	104	381531.9628	8026472.5164	L-RC-104	
105	380969.3729	8024846.4066	R-RC-105	105	381392.1078	8026492.2487	L-RC-105	
106	380925.5631	8024827.8600	R-RC-106	106	381310.0657	8026464.2685	L-RC-106	
107	380889.2450	8024804.0292	R-RC-107	107	381303.2244	8026414.4640	L-RC-107	
108	380851.2662	8024761.9791	R-RC-108	108	381306.0025	8026356.5201	L-RC-108	
109	380840.5086	8024716.7165	R-RC-109	109	381299.5035	8026301.0869	L-RC-109	
110	380847.6176	8024682.7591	R-RC-110	110	381252.1116	8026238.6444	L-RC-110	
111	380841.4373	8024652.3937	R-RC-111	111	381229.2232	8026172.7016	L-RC-111	

VERTI	VERTICES FAJA MARGINAL MARGEN DERECHO			VERTICES FAJA MARGINAL MARGEN IZQUIERDO				
N°	COORD	ENADAS		N°	COORI	DENADAS		
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACION	
112	380836.3719	8024626.8284	R-RC-112	112	381228.3966	8026126.1308	L-RC-112	
113	380812.8861	8024601.9665	R-RC-113	113	381232.3653	8026078.8365	L-RC-113	
114	380792.2485	8024563.2314	R-RC-114	114	381215.5642	8026023.6443	L-RC-114	
115	380771.3520	8024520.4677	R-RC-115	115	381208.1559	8025966.8910	L-RC-115	
116	380776.9463	8024496.6003	R-RC-116	116	381199.2974	8025904.7411	L-RC-116	
117	380784.1498	8024475.3151	R-RC-117	117	381197.1385	8025849.5782	L-RC-117	
118	380776.2147	8024458.6149	R-RC-118	118	381190.0980	8025798.2453	L-RC-118	
119	380773.7622	8024426.3241	R-RC-119	119	381209.3654	8025713.4011	L-RC-119	
120	380755.9899	8024412.5456	R-RC-120	120	381227.7616	8025673.4146	L-RC-120	
121	380744.2424	8024385.3993	R-RC-121	121	381216.3484	8025618.5394	L-RC-121	
122	380728.2086	8024368.0955	R-RC-122	122	381213.6090	8025566.7767	L-RC-122	
123	380699.3161	8024344.2830	R-RC-123	123	381201.3760	8025526.8162	L-RC-123	
124	380664.6825	8024326.2291	R-RC-124	124	381184.6247	8025499.0336	L-RC-124	
125	380630.2388	8024286.7799	R-RC-125	125	381163.1682	8025471.5944	L-RC-125	
126	380595.9427	8024253.3166	R-RC-126	126	381107.9580	8025442.9091	L-RC-126	
127	380560.5683	8024226.9665	R-RC-127	127	381106.4525	8025395.2470	L-RC-127	
128	380517.0707	8024198.7089	R-RC-128	128	381111.1356	8025359.8192	L-RC-128	
129	380500.0844	8024179.6589	R-RC-129	129	381116.6566	8025319.0837	L-RC-129	
130	380466.2156	8024170.8744	R-RC-130	130	381125.7149	8025280.0622	L-RC-130	
131	380386.9748	8024101.0510	R-RC-131	131	381159.0650	8025252.9273	L-RC-131	
132	380352.4731	8024080.7310	R-RC-132	132	381166.0765	8025196.8356	L-RC-132	
133	380305.0061	8024050.5498	R-RC-133	133	381160.7848	8025147.0938	L-RC-133	
134	380282.4113	8024009.6108	R-RC-134	134	381127.1042	8025101.9461	L-RC-134	
135	380262.7263	8023973.4158	R-RC-135	135	381121.5016	8025059.8845	L-RC-135	
136	380226.1078	8023950.5557	R-RC-136	136	381115.0647	8025022.6071	L-RC-136	
137	380212.9576	8023922.5868	R-RC-137	137	381110.7000	8024978.9146	L-RC-137	
138	380199.5286	8023888.4564	R-RC-138	138	381108.0541	8024922.0291	L-RC-138	
139	380181.2075	8023851.4799	R-RC-139	139	381094.5603	8024877.5790	L-RC-139	
140	380147.0643	8023815.8310	R-RC-140	140	381073.9228	8024839.7435	L-RC-140	
141	380121.3933	8023784.9020	R-RC-141	141	380964.5191	8024800.4628	L-RC-141	
142	380094.2256	8023743.9927	R-RC-142	142	380907.4068	8024771.4241	L-RC-142	
143	380068.6580	8023723.9854	R-RC-143	143	380891.7585	8024716.7485	L-RC-143	
144	379996.9910	8023706.2895	R-RC-144	144	380886.9960	8024673.5684	L-RC-144	
145	379943.9639	8023662.8917	R-RC-145	145	380899.9606	8024640.7600	L-RC-145	
146	379881.7572	8023619.1995	R-RC-146	146	380887.2077	8024600.9666	L-RC-146	
147	379818.2587	8023584.8315	R-RC-147	147	380846.5147	8024561.8611	L-RC-147	
148	379775.2361	8023544.4458	R-RC-148	148	380843.6836	8024505.2137	L-RC-148	

VERT	VERTICES FAJA MARGINAL MARGEN DERECHO			VERTICES FAJA MARGINAL MARGEN IZQUIERDO				
N°	COORD	ENADAS	0001510401611	N°	COORI	DENADAS		
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	
149	379743.4756	8023507.4271	R-RC-149	149	380858.2357	8024462.7480	L-RC-149	
150	379704.3440	8023466.7548	R-RC-150	150	380844.0576	8024422.2460	L-RC-150	
151	379667.2754	8023422.2311	R-RC-151	151	380811.9336	8024389.6964	L-RC-151	
152	379632.8795	8023365.0810	R-RC-152	152	380783.5208	8024359.5926	L-RC-152	
153	379596.9288	8023327.3204	R-RC-153	153	380756.6391	8024327.2075	L-RC-153	
154	379529.4599	8023265.4739	R-RC-154	154	380716.4224	8024296.3041	L-RC-154	
155	379510.7935	8023209.7244	R-RC-155	155	380680.1439	8024272.0770	L-RC-155	
156	379497.2997	8023164.2160	R-RC-156	156	380650.9338	8024251.9687	L-RC-156	
157	379473.7517	8023119.2367	R-RC-157	157	380628.0738	8024216.1969	L-RC-157	
158	379428.5740	8023090.0002	R-RC-158	158	380604.6622	8024181.1572	L-RC-158	
159	379359.2385	8023063.8690	R-RC-159	159	380577.6970	8024153.3318	L-RC-159	
160	379313.0951	8023023.2290	R-RC-160	160	380546.7936	8024122.2167	L-RC-160	
161	379278.3985	8022986.9071	R-RC-161	161	380423.8272	8024056.6852	L-RC-161	
162	379246.6318	8022934.3290	R-RC-162	162	380355.6058	8024018.1942	L-RC-162	
163	379220.1732	8022890.0904	R-RC-163	163	380329.1474	8023975.3316	L-RC-163	
164	379187.5376	8022852.5396	R-RC-164	164	380273.5848	8023916.3294	L-RC-164	
165	379156.2498	8022815.5835	R-RC-165	165	380242.6285	8023852.0355	L-RC-165	
166	379113.3872	8022779.5472	R-RC-166	166	380227.1270	8023810.0010	L-RC-166	
167	378976.9569	8022721.5464	R-RC-167	167	380165.8991	8023759.6957	L-RC-167	
168	378941.7865	8022662.3463	R-RC-168	168	380141.3762	8023698.8838	L-RC-168	
169	378903.2875	8022626.0170	R-RC-169	169	380235.7493	8023631.6371	L-RC-169	
170	378861.4962	8022579.2740	R-RC-170	170	380202.5105	8023591.7976	L-RC-170	
171	378821.4204	8022532.3362	R-RC-171	171	380094.5603	8023648.9477	L-RC-171	
172	378781.8649	8022495.0834	R-RC-172	172	380004.6018	8023652.1227	L-RC-172	
173	378726.3023	8022458.7031	R-RC-173	173	379952.5449	8023611.5753	L-RC-173	
174	378680.9923	8022432.5755	R-RC-174	174	379918.8105	8023581.1481	L-RC-174	
175	378646.5964	8022402.4791	R-RC-175	175	379857.9507	8023548.0234	L-RC-175	
176	378611.4903	8022371.9006	R-RC-176	176	379811.3960	8023510.4328	L-RC-176	
177	378576.1408	8022337.4711	R-RC-177	177	379727.1525	8023400.5776	L-RC-177	
178	378537.4420	8022287.8443	R-RC-178	178	379705.1590	8023356.5826	L-RC-178	
179	378535.4712	8022249.3512	R-RC-179	179	379677.3645	8023318.9674	L-RC-179	
180	378527.8644	8022220.2469	R-RC-180	180	379647.3030	8023291.8617	L-RC-180	
181	378485.2003	8022186.5125	R-RC-181	181	379609.5781	8023253.3949	L-RC-181	
182	378434.2796	8022157.2555	R-RC-182	182	379576.8689	8023206.7963	L-RC-182	
183	378398.0494	8022135.0927	R-RC-183	183	379552.7688	8023173.0600	L-RC-183	
184	378303.2989	8022073.7336	R-RC-184	184	379532.9946	8023114.3870	L-RC-184	
185	378250.7128	8022053.2284	R-RC-185	185	379512.5089	8023083.1431	L-RC-185	

VERTI	VERTICES FAJA MARGINAL MARGEN DERECHO				VERTICES FAJA MARGINAL MARGEN IZQUIERDO			
N°	COORD	ENADAS		N°	COORI	DENADAS		
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACION	
186	378177.2908	8022017.8403	R-RC-186	186	379479.6012	8023050.6575	L-RC-186	
187	378133.6345	8021989.3975	R-RC-187	187	379436.5072	8023016.4679	L-RC-187	
188	378085.3479	8021950.3714	R-RC-188	188	379396.1052	8022977.6667	L-RC-188	
189	378053.2671	8021908.3687	R-RC-189	189	379356.8013	8022931.4704	L-RC-189	
190	377991.0899	8021876.2879	R-RC-190	190	379331.7650	8022893.8915	L-RC-190	
191	377922.2981	8021836.9311	R-RC-191	191	379304.3937	8022851.8849	L-RC-191	
192	377886.9100	8021807.8268	R-RC-192	192	379282.5535	8022818.3869	L-RC-192	
193	377851.1912	8021845.8608	R-RC-193	193	379256.5180	8022787.0236	L-RC-193	
194	377826.3297	8021881.2322	R-RC-194	194	379214.3237	8022744.3493	L-RC-194	
195	377798.1662	8021913.6084	R-RC-195	195	379128.5945	8022632.6909	L-RC-195	
196	377758.9738	8021893.4669	R-RC-196	196	379079.5435	8022596.5289	L-RC-196	
197	377770.2212	8021826.9761	R-RC-197	197	379047.2778	8022564.8630	L-RC-197	
198	377746.8064	8021744.4942	R-RC-198	198	379010.4766	8022518.0880	L-RC-198	
199	377712.1129	8021682.2708	R-RC-199	199	378971.2695	8022474.8568	L-RC-199	
200	377650.1837	8021618.5505	R-RC-200	200	378912.0689	8022433.8463	L-RC-200	
201	377590.2520	8021574.1252	R-RC-201	201	378837.8599	8022399.8464	L-RC-201	
202	377436.4600	8021419.8050	R-RC-202	202	378759.9666	8022344.5568	L-RC-202	
203	377376.3855	8021363.2408	R-RC-203	203	378703.2885	8022319.1222	L-RC-203	
204	377383.2635	8021267.7445	R-RC-204	204	378656.7520	8022275.9374	L-RC-204	
205	377375.2884	8021167.8566	R-RC-205	205	378624.6357	8022239.2280	L-RC-205	
206	377346.9547	8021099.8198	R-RC-206	206	378598.2063	8022199.0282	L-RC-206	
207	377331.4063	8021000.2318	R-RC-207	207	378551.5733	8022138.5046	L-RC-207	
208	377312.0610	8020929.4950	R-RC-208	208	378530.0759	8022118.3301	L-RC-208	
209	377273.4128	8020850.4883	R-RC-209	209	378499.2462	8022087.8448	L-RC-209	
210	377227.5968	8020803.4296	R-RC-210	210	378460.0824	8022054.4052	L-RC-210	
211	377176.5591	8020742.4322	R-RC-211	211	378414.8638	8022028.2437	L-RC-211	
212	377138.9257	8020687.3180	R-RC-212	212	378342.0282	8021991.2662	L-RC-212	
213	377046.3053	8020532.5133	R-RC-213	213	378313.9839	8021974.9248	L-RC-213	
214	376989.6466	8020434.4302	R-RC-214	214	378263.8451	8021974.5675	L-RC-214	
215	376965.6469	8020335.9450	R-RC-215	215	378228.6070	8021965.1592	L-RC-215	
216	376930.9846	8020253.5298	R-RC-216	216	378189.0935	8021934.7750	L-RC-216	
217	376886.7337	8020174.8563	R-RC-217	217	378154.8198	8021910.2562	L-RC-217	
218	376826.0128	8020095.3886	R-RC-218	218	378123.0335	8021887.5812	L-RC-218	
219	376731.1831	8020042.7807	R-RC-219	219	378081.6526	8021861.3345	L-RC-219	
220	376627.3472	8020004.7526	R-RC-220	220	378044.4653	8021833.6457	L-RC-220	
221	376551.7603	8019947.5959	R-RC-221	221	377992.1174	8021828.1028	L-RC-221	
222	376419.0533	8019857.2999	R-RC-222	222	377965.7648	8021798.8927	L-RC-222	

VERTI	VERTICES FAJA MARGINAL MARGEN DERECHO				ICES FAJA MAI	RGINAL MARGEN	IZQUIERDO
N°	COORD	ENADAS		N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACION
223	376363.1340	8019802.0184	R-RC-223	223	377939.4917	8021771.9669	L-RC-223
224	376336.7979	8019727.5702	R-RC-224	224	377926.7916	8021742.8627	L-RC-224
225	376336.4387	8019659.1223	R-RC-225	225	377909.1703	8021719.6057	L-RC-225
226	376336.7432	8019602.8455	R-RC-226	226	377897.9917	8021678.2821	L-RC-226
227	376332.8668	8019524.4491	R-RC-227	227	377874.4966	8021648.6487	L-RC-227
228	376343.5824	8019457.7740	R-RC-228	228	377859.7725	8021620.3074	L-RC-228
229	376308.6063	8019403.1718	R-RC-229	229	377820.6141	8021592.7907	L-RC-229
230	376257.3993	8019353.6874	R-RC-230	230	377793.3091	8021561.8873	L-RC-230
231	376189.6608	8019294.2612	R-RC-231	231	377764.4364	8021529.3003	L-RC-231
232	376153.1383	8019232.3085	R-RC-232	232	377747.3773	8021483.0192	L-RC-232
233	376112.5511	8019174.3495	R-RC-233	233	377696.1274	8021442.5600	L-RC-233
234	376081.3666	8019129.4783	R-RC-234	234	377672.2046	8021427.3332	L-RC-234
235	376045.8065	8019083.9699	R-RC-235	235	377652.2065	8021370.0640	L-RC-235
236	375971.5595	8018960.0677	R-RC-236	236	377640.0356	8021340.9598	L-RC-236
237	375951.8462	8018903.4827	R-RC-237	237	377623.6579	8021312.6272	L-RC-237
238	375904.2142	8018831.2590	R-RC-238	238	377609.6551	8021281.8246	L-RC-238
239	375870.4003	8018764.6214	R-RC-239	239	377591.9607	8021251.6141	L-RC-239
240	375851.7831	8018701.7104	R-RC-240	240	377577.9378	8021217.8003	L-RC-240
241	375846.0192	8018644.6284	R-RC-241	241	377567.3544	8021194.9403	L-RC-241
242	375840.9922	8018590.9179	R-RC-242	242	377552.6700	8021156.9989	L-RC-242
243	375827.9520	8018546.8184	R-RC-243	243	377527.1906	8021137.2433	L-RC-243
244	375808.9775	8018485.3489	R-RC-244	244	377517.8773	8021088.7716	L-RC-244
245	375793.4190	8018429.7604	R-RC-245	245	377501.9760	8021055.4958	L-RC-245
246	375787.8108	8018375.0174	R-RC-246	246	377501.9760	8021055.4958	L-RC-246
247	375779.6087	8018320.2486	R-RC-247	247	377493.5356	8021000.9297	L-RC-247
248	375758.3725	8018273.9141	R-RC-248	248	377477.9893	8020969.3242	L-RC-248
249	375742.3024	8018233.4651	R-RC-249	249	377459.4572	8020956.3385	L-RC-249
250	375711.5373	8018190.5535	R-RC-250	250	377444.4288	8020924.3768	L-RC-250
251	375669.8064	8018150.1212	R-RC-251	251	377424.1087	8020876.7517	L-RC-251
252	375568.9040	8018057.9079	R-RC-252	252	377390.5268	8020877.7592	L-RC-252
253	375537.7790	8018018.0938	R-RC-253	253	377369.4989	8020829.3560	L-RC-253
254	375524.0207	8017978.4062	R-RC-254	254	377335.8438	8020790.9384	L-RC-254
255	375489.6335	8017912.8385	R-RC-255	255	377306.7261	8020746.9017	L-RC-255
256	375479.9124	8017875.8957	R-RC-256	256	377282.8077	8020704.5683	L-RC-256
257	375471.2726	8017830.8288	R-RC-257	257	377272.5551	8020655.1363	L-RC-257
258	375465.1772	8017775.6821	R-RC-258	258	377237.2067	8020599.0445	L-RC-258
259	375457.4916	8017726.3740	R-RC-259	259	377222.8297	8020548.5908	L-RC-259

VERT	CES FAJA MA	RGINAL MARGE	EN DERECHO	VERTICES FAJA MARGINAL MARGEN IZQUIERDO			
N°	COORD	ENADAS	0001510401611	N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN
260	375449.2327	8017677.6612	R-RC-260	260	377188.4947	8020482.7307	L-RC-260
261	375441.6127	8017634.4811	R-RC-261	261	377184.0783	8020459.3442	L-RC-261
262	375433.1460	8017596.5927	R-RC-262	262	377169.6849	8020434.3675	L-RC-262
263	375430.1827	8017572.8860	R-RC-263	263	377149.5674	8020390.4037	L-RC-263
264	375428.2777	8017554.2593	R-RC-264	264	377123.6300	8020355.7637	L-RC-264
265	375421.7160	8017522.2975	R-RC-265	265	377113.0637	8020323.0815	L-RC-265
266	375418.8327	8017502.6838	R-RC-266	266	377111.5764	8020288.6749	L-RC-266
267	375414.1757	8017459.2421	R-RC-267	267	377088.6164	8020241.3271	L-RC-267
268	375414.1757	8017459.2421	R-RC-268	268	377062.7930	8020197.9353	L-RC-268
269	375417.4725	8017408.1803	R-RC-269	269	377045.0130	8020166.6086	L-RC-269
270	375405.3546	8017357.4331	R-RC-270	270	377032.6846	8020115.9186	L-RC-270
271	375394.8771	8017332.3505	R-RC-271	271	377029.1380	8020062.8917	L-RC-271
272	375380.4308	8017296.3142	R-RC-272	272	377015.5255	8020020.8206	L-RC-272
273	375362.8095	8017259.6429	R-RC-273	273	377010.1311	8019982.8894	L-RC-273
274	375328.3179	8017233.3190	R-RC-274	274	376991.6731	8019958.8751	L-RC-274
275	375260.8490	8017166.1147	R-RC-275	275	376975.5864	8019943.4234	L-RC-275
276	375246.0323	8017135.4230	R-RC-276	276	376951.4994	8019928.2793	L-RC-276
277	375237.0365	8017113.7271	R-RC-277	277	376919.7493	8019908.1709	L-RC-277
278	375215.8698	8017081.4479	R-RC-278	278	376879.7442	8019891.8725	L-RC-278
279	375191.2635	8017076.9500	R-RC-279	279	376846.3008	8019870.4942	L-RC-279
280	375158.7197	8017068.2187	R-RC-280	280	376814.3768	8019847.7398	L-RC-280
281	375140.9925	8017044.9353	R-RC-281	281	376784.0938	8019825.5794	L-RC-281
282	375106.0675	8017018.2123	R-RC-282	282	376733.4349	8019807.8999	L-RC-282
283	375081.0145	8016981.8872	R-RC-283	283	376680.5357	8019792.5461	L-RC-283
284	375029.8673	8016966.0893	R-RC-284	284	376658.7398	8019772.4833	L-RC-284
285	375018.4902	8016937.2497	R-RC-285	285	376627.6487	8019731.3760	L-RC-285
286	375013.4631	8016911.8496	R-RC-286	286	376625.3338	8019701.1513	L-RC-286
287	374998.3818	8016895.9746	R-RC-287	287	376610.3714	8019644.3014	L-RC-287
288	374981.9776	8016878.2475	R-RC-288	288	376600.8464	8019618.5839	L-RC-288
289	374940.9671	8016845.7037	R-RC-289	289	376578.2674	8019588.5482	L-RC-289
290	374927.8967	8016835.5966	R-RC-290	290	376559.2372	8019553.1109	L-RC-290
291	374902.1558	8016823.9438	R-RC-291	291	376522.8603	8019527.2363	L-RC-291
292	374859.1609	8016785.8438	R-RC-292	292	376495.4704	8019514.1479	L-RC-292
293	374840.1475	8016774.8217	R-RC-293	293	376454.7564	8019494.6925	L-RC-293
294	374819.8274	8016758.3116	R-RC-294	294	376432.9538	8019465.2180	L-RC-294
295	374809.0324	8016743.7066	R-RC-295	295	376413.1100	8019422.5538	L-RC-295
296	374812.8424	8016717.0365	R-RC-296	296	376395.1952	8019381.0256	L-RC-296

VERT	CES FAJA MA	RGINAL MARGE	EN DERECHO	VERTICES FAJA MARGINAL MARGEN IZQUIERDO			
N°	COORD	ENADAS	0001510401611	N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN
297	374787.6836	8016679.4369	R-RC-297	297	376347.7587	8019346.7372	L-RC-297
298	374774.1728	8016648.4022	R-RC-298	298	376301.8798	8019304.5096	L-RC-298
299	374760.1338	8016618.3309	R-RC-299	299	376270.4802	8019274.3553	L-RC-299
300	374749.4777	8016598.5801	R-RC-300	300	376242.4283	8019235.6778	L-RC-300
301	374734.2123	8016546.3967	R-RC-301	301	376209.7749	8019203.2252	L-RC-301
302	374714.4172	8016513.4128	R-RC-302	302	376168.0765	8019158.1401	L-RC-302
303	374697.2722	8016506.4278	R-RC-303	303	376149.7970	8019121.3117	L-RC-303
304	374678.2221	8016494.3628	R-RC-304	304	376115.3714	8019086.3850	L-RC-304
305	374648.1654	8016460.9194	R-RC-305	305	376073.2496	8019030.5049	L-RC-305
306	374637.0957	8016428.1264	R-RC-306	306	376009.0781	8018910.0283	L-RC-306
307	374621.6175	8016379.0461	R-RC-307	307	375991.1252	8018861.6493	L-RC-307
308	374622.4113	8016342.0043	R-RC-308	308	375949.2160	8018807.1713	L-RC-308
309	374633.2592	8016306.4178	R-RC-309	309	375924.7420	8018748.3014	L-RC-309
310	374631.8915	8016281.9509	R-RC-310	310	375905.5597	8018700.3456	L-RC-310
311	374613.9384	8016251.2253	R-RC-311	311	375892.2193	8018634.5441	L-RC-311
312	374597.4081	8016224.3968	R-RC-312	312	375882.0778	8018582.2750	L-RC-312
313	374559.1360	8016174.2405	R-RC-313	313	375851.2888	8018500.8754	L-RC-313
314	374540.5226	8016141.8466	R-RC-314	314	375829.5291	8018425.9766	L-RC-314
315	374526.8965	8016098.9840	R-RC-315	315	375816.0247	8018341.4509	L-RC-315
316	374535.5881	8016056.2361	R-RC-316	316	375811.3330	8018280.9237	L-RC-316
317	374532.1353	8016019.5824	R-RC-317	317	375783.4535	8018223.9727	L-RC-317
318	374518.1302	8015978.2823	R-RC-318	318	375770.5284	8018179.0229	L-RC-318
319	374493.2547	8015933.9984	R-RC-319	319	375713.9482	8018127.3761	L-RC-319
320	374467.0609	8015883.1983	R-RC-320	320	375633.6565	8018056.8865	L-RC-320
321	374443.2483	8015830.5461	R-RC-321	321	375608.5254	8018028.6225	L-RC-321
322	374415.2024	8015772.8668	R-RC-322	322	375576.8266	8017989.3427	L-RC-322
323	374402.7507	8015740.9298	R-RC-323	323	375555.6598	8017950.6076	L-RC-323
324	374380.8563	8015726.9637	R-RC-324	324	375534.9949	8017910.4553	L-RC-324
325	374372.4324	8015691.1598	R-RC-325	325	375531.9392	8017868.5562	L-RC-325
326	374371.7710	8015636.5232	R-RC-326	326	375541.4781	8017825.3007	L-RC-326
327	374363.0420	8015600.5137	R-RC-327	327	375541.6898	8017778.7340	L-RC-327
328	374364.9447	8015560.3407	R-RC-328	328	375538.9381	8017731.7439	L-RC-328
329	374328.2438	8015507.6726	R-RC-329	329	375526.2381	8017662.1054	L-RC-329
330	374318.0075	8015476.4676	R-RC-330	330	375503.5759	8017611.6982	L-RC-330
331	374306.5454	8015447.6194	R-RC-331	331	375493.9450	8017546.2931	L-RC-331
332	374216.3158	8015430.8484	R-RC-332	332	375494.8316	8017499.1403	L-RC-332
333	374189.2844	8015385.6466	R-RC-333	333	375494.8316	8017499.1403	L-RC-333

VERTI	CES FAJA MA	RGINAL MARGE	EN DERECHO	VERTICES FAJA MARGINAL MARGEN IZQUIERDO				
N°	COORD	ENADAS		N°	COORI	DENADAS		
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	
334	374203.0073	8015356.5268	R-RC-334	334	375522.8514	8017465.5725	L-RC-334	
335	374229.9948	8015348.5893	R-RC-335	335	375507.5056	8017445.7287	L-RC-335	
336	374248.3924	8015321.5379	R-RC-336	336	375477.3430	8017426.9433	L-RC-336	
337	374281.2527	8015298.4886	R-RC-337	337	375459.6297	8017402.2873	L-RC-337	
338	374269.0426	8015254.1782	R-RC-338	338	375448.0992	8017355.9906	L-RC-338	
339	374248.3067	8015194.2300	R-RC-339	339	375432.4359	8017309.0005	L-RC-339	
340	374240.0845	8015156.1465	R-RC-340	340	375412.7508	8017257.7770	L-RC-340	
341	374231.3003	8015124.7933	R-RC-341	341	375389.4479	8017218.8936	L-RC-341	
342	374216.4836	8015093.5724	R-RC-342	342	375339.6024	8017131.8281	L-RC-342	
343	374197.4336	8015063.3570	R-RC-343	343	375323.5794	8017104.0115	L-RC-343	
344	374171.0482	8015029.3414	R-RC-344	344	375302.8691	8017075.5383	L-RC-344	
345	374154.4184	8014981.8069	R-RC-345	345	375272.0259	8017045.7308	L-RC-345	
346	374166.6422	8014926.1598	R-RC-346	346	375243.2280	8017020.2100	L-RC-346	
347	374178.8130	8014889.8641	R-RC-347	347	375219.5325	8016986.4640	L-RC-347	
348	374158.7047	8014852.9547	R-RC-348	348	375193.1727	8016956.3168	L-RC-348	
349	374164.1091	8014790.5935	R-RC-349	349	375141.5482	8016924.0144	L-RC-349	
350	374171.5805	8014745.3053	R-RC-350	350	375146.3940	8016899.2371	L-RC-350	
351	374133.0221	8014696.0583	R-RC-351	351	375149.8411	8016856.7121	L-RC-351	
352	374115.7098	8014655.4428	R-RC-352	352	375138.2656	8016833.2303	L-RC-352	
353	374115.7785	8014622.8904	R-RC-353	353	375133.9661	8016807.4334	L-RC-353	
354	374106.1848	8014540.0843	R-RC-354	354	375127.3400	8016783.1235	L-RC-354	
355	374089.8802	8014500.8252	R-RC-355	355	375111.6767	8016762.1685	L-RC-355	
356	374086.3084	8014471.0595	R-RC-356	356	375087.9946	8016732.0270	L-RC-356	
357	374084.7209	8014437.7220	R-RC-357	357	375066.1665	8016707.5530	L-RC-357	
358	374080.3552	8014396.8438	R-RC-358	358	375029.5429	8016678.5830	L-RC-358	
359	374068.4489	8014369.4593	R-RC-359	359	374993.7366	8016648.0216	L-RC-359	
360	374050.6222	8014332.1214	R-RC-360	360	374953.2463	8016618.0998	L-RC-360	
361	374007.7596	8014294.0213	R-RC-361	361	374956.0334	8016578.5683	L-RC-361	
362	373968.0394	8014313.1030	R-RC-362	362	374910.7234	8016558.3938	L-RC-362	
363	373939.0674	8014281.3529	R-RC-363	363	374888.8953	8016526.6438	L-RC-363	
364	373922.3987	8014250.3966	R-RC-364	364	374875.3354	8016497.5395	L-RC-364	
365	373901.2922	8014206.8734	R-RC-365	365	374865.4135	8016452.8910	L-RC-365	
366	373878.0279	8014169.1164	R-RC-366	366	374850.8613	8016411.5498	L-RC-366	
367	373885.5686	8014117.1257	R-RC-367	367	374839.1231	8016370.1891	L-RC-367	
368	373884.9071	8014076.9090	R-RC-368	368	374782.2423	8016351.3466	L-RC-368	
369	373883.8488	8014019.4943	R-RC-369	369	374765.8433	8016321.2709	L-RC-369	
370	373870.0904	8013980.8650	R-RC-370	370	374747.3429	8016287.5261	L-RC-370	

VERTI	CES FAJA MA	RGINAL MARGE	EN DERECHO	VERTICES FAJA MARGINAL MARGEN IZQUIERDO			
N°	COORD	ENADAS		N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACION
371	373871.6779	8013940.6483	R-RC-371	371	374704.0192	8016257.2108	L-RC-371
372	373888.1086	8013913.2903	R-RC-372	372	374671.1321	8016213.6891	L-RC-372
373	373893.5757	8013877.7308	R-RC-373	373	374638.3344	8016168.5295	L-RC-373
374	373886.0767	8013828.8770	R-RC-374	374	374598.6468	8016125.8653	L-RC-374
375	373879.7807	8013787.8603	R-RC-375	375	374584.4254	8016079.5632	L-RC-375
376	373873.1230	8013743.6993	R-RC-376	376	374575.4281	8016032.9999	L-RC-376
377	373870.2501	8013709.3245	R-RC-377	377	374571.7446	8015984.8393	L-RC-377
378	373874.8198	8013681.3653	R-RC-378	378	374551.4245	8015949.3850	L-RC-378
379	373907.8927	8013584.1307	R-RC-379	379	374528.6676	8015905.9725	L-RC-379
380	373931.7357	8013533.6825	R-RC-380	380	374507.7682	8015864.1609	L-RC-380
381	373956.1833	8013486.0574	R-RC-381	381	374472.5764	8015809.6760	L-RC-381
382	373980.6533	8013437.9482	R-RC-382	382	374448.5926	8015750.1443	L-RC-382
383	373987.5524	8013408.7156	R-RC-383	383	374421.6932	8015694.8406	L-RC-383
384	373950.6297	8013361.8446	R-RC-384	384	374419.4025	8015645.3684	L-RC-384
385	373927.7697	8013330.9412	R-RC-385	385	374444.1411	8015612.1993	L-RC-385
386	373909.3547	8013301.9428	R-RC-386	386	374441.9556	8015580.3505	L-RC-386
387	373898.0040	8013273.6191	R-RC-387	387	374434.0888	8015547.5379	L-RC-387
388	373870.9106	8013226.2057	R-RC-388	388	374426.2023	8015468.8478	L-RC-388
389	373848.9555	8013205.4252	R-RC-389	389	374403.5010	8015422.4927	L-RC-389
390	373838.2462	8013163.8062	R-RC-390	390	374387.0462	8015350.2440	L-RC-390
391	373831.4792	8013137.5077	R-RC-391	391	374356.2716	8015328.1330	L-RC-391
392	373807.6751	8013115.4244	R-RC-392	392	374342.6526	8015293.5970	L-RC-392
393	373808.4688	8013099.2848	R-RC-393	393	374318.2747	8015248.9270	L-RC-393
394	373819.3131	8013060.0566	R-RC-394	394	374318.2747	8015248.9270	L-RC-394
395	373814.4762	8013027.6753	R-RC-395	395	374307.9052	8015227.7564	L-RC-395
396	373808.0152	8012985.3562	R-RC-396	396	374302.4521	8015184.1476	L-RC-396
397	373782.4073	8012888.4115	R-RC-397	397	374295.4433	8015147.8256	L-RC-397
398	373763.3573	8012852.9572	R-RC-398	398	374286.0770	8015099.7242	L-RC-398
399	373739.0156	8012813.7988	R-RC-399	399	374270.5195	8015070.0379	L-RC-399
400	373705.6780	8012765.3800	R-RC-400	400	374242.4207	8015042.2566	L-RC-400
401	373673.5969	8012726.7916	R-RC-401	401	374219.3198	8015016.1898	L-RC-401
402	373655.0858	8012694.3140	R-RC-402	402	374206.2256	8014997.4890	L-RC-402
403	373645.3529	8012659.8110	R-RC-403	403	374192.0282	8014969.4128	L-RC-403
404	373629.7424	8012636.5276	R-RC-404	404	374202.8918	8014935.7351	L-RC-404
405	373605.1361	8012601.8671	R-RC-405	405	374214.7981	8014915.7326	L-RC-405
406	373623.3357	8012567.3137	R-RC-406	406	374218.9256	8014894.1426	L-RC-406
407	373641.5429	8012500.7961	R-RC-407	407	374204.2386	8014848.8405	L-RC-407

VERT	CES FAJA MA	RGINAL MARGE	EN DERECHO	VERT	ICES FAJA MA	RGINAL MARGEN	IZQUIERDO
N°	COORD	ENADAS	,	N°	COORI	DENADAS	,
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN
408	373630.1658	8012474.8669	R-RC-408	408	374201.3811	8014818.2811	L-RC-408
409	373600.7970	8012428.8293	R-RC-409	409	374200.8281	8014788.1767	L-RC-409
410	373628.5783	8012397.0792	R-RC-410	410	374210.1773	8014750.7050	L-RC-410
411	373658.9508	8012368.4441	R-RC-411	411	374209.9731	8014717.1944	L-RC-411
412	373640.2746	8012341.1449	R-RC-412	412	374203.8877	8014688.8839	L-RC-412
413	373616.4036	8012307.4545	R-RC-413	413	374184.4477	8014660.8008	L-RC-413
414	373733.6397	8012229.3929	R-RC-414	414	374173.6024	8014631.0139	L-RC-414
415	373802.4315	8012309.4296	R-RC-415	415	374149.4724	8014540.8437	L-RC-415
416	373814.3378	8012376.5677	R-RC-416	416	374139.9473	8014503.3787	L-RC-416
417	373837.1581	8012424.1928	R-RC-417	417	374129.7873	8014468.4536	L-RC-417
418	373867.9160	8012483.7242	R-RC-418	418	374126.2392	8014425.6122	L-RC-418
419	373894.7051	8012541.6019	R-RC-419	419	374120.4210	8014387.8084	L-RC-419
420	373913.5567	8012560.1228	R-RC-420	420	374121.0729	8014364.2395	L-RC-420
421	373955.8901	8012544.5785	R-RC-421	421	374111.8485	8014322.5620	L-RC-421
422	373964.8198	8012489.3466	R-RC-422	422	374104.4041	8014288.5685	L-RC-422
423	373969.1468	8012460.7526	R-RC-423	423	374064.9097	8014257.5087	L-RC-423
424	373984.0958	8012418.5515	R-RC-424	424	374027.6034	8014228.9337	L-RC-424
425	373990.8427	8012384.0233	R-RC-425	425	374046.2555	8014179.4433	L-RC-425
426	373995.6052	8012352.2732	R-RC-426	426	374045.3718	8014155.1334	L-RC-426
427	373993.4835	8012309.3035	R-RC-427	427	374048.8799	8014121.7685	L-RC-427
428	373982.6910	8012276.9229	R-RC-428	428	374058.3894	8014079.7270	L-RC-428
429	373978.4022	8012228.7378	R-RC-429	429	374058.3665	8014040.9181	L-RC-429
430	373966.2364	8012183.2041	R-RC-430	430	374052.8103	8014005.1992	L-RC-430
431	373949.5676	8012141.1353	R-RC-431	431	374052.5457	8013975.8304	L-RC-431
432	373936.8676	8012101.4477	R-RC-432	432	374031.6436	8013941.4345	L-RC-432
433	373927.7394	8012065.7289	R-RC-433	433	374014.3996	8013902.2719	L-RC-433
434	373922.7124	8012033.7142	R-RC-434	434	373999.2754	8013871.0983	L-RC-434
435	373913.1873	8011995.8787	R-RC-435	435	373980.8769	8013833.1758	L-RC-435
436	373900.2227	8011961.7474	R-RC-436	436	373973.4579	8013774.2914	L-RC-436
437	373889.1102	8011927.6161	R-RC-437	437	373963.9329	8013711.4262	L-RC-437
438	373872.4414	8011903.0098	R-RC-438	438	373973.8057	8013606.8665	L-RC-438
439	373852.8622	8011867.0264	R-RC-439	439	373998.0414	8013568.3713	L-RC-439
440	373840.4524	8011841.5044	R-RC-440	440	374007.8512	8013516.7908	L-RC-440
441	373821.7171	8011789.6089	R-RC-441	441	374032.1727	8013500.9024	L-RC-441
442	373809.2976	8011761.4449	R-RC-442	442	374045.3163	8013475.1983	L-RC-442
443	373791.4725	8011724.6314	R-RC-443	443	374061.8061	8013447.1919	L-RC-443
444	373779.5435	8011692.9668	R-RC-444	444	374067.2570	8013421.2209	L-RC-444

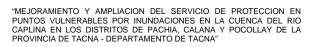
VERTI	CES FAJA MA	RGINAL MARGE	EN DERECHO	VERTICES FAJA MARGINAL MARGEN IZQUIERDO				
N°	COORD	ENADAS		N°	COORI	DENADAS		
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACION	
445	373766.6079	8011662.7677	R-RC-445	445	374070.8020	8013368.0813	L-RC-445	
446	373759.4641	8011627.8426	R-RC-446	446	374079.5332	8013344.2687	L-RC-446	
447	373752.8495	8011596.6217	R-RC-447	447	374091.0754	8013320.8062	L-RC-447	
448	373748.6162	8011574.9258	R-RC-448	448	374101.7282	8013299.1517	L-RC-448	
449	373732.7411	8011540.0007	R-RC-449	449	374114.1444	8013278.9878	L-RC-449	
450	373713.6911	8011523.8611	R-RC-450	450	374143.5625	8013264.6290	L-RC-450	
451	373701.7848	8011497.1382	R-RC-451	451	374163.9355	8013247.4310	L-RC-451	
452	373682.4702	8011474.1194	R-RC-452	452	374185.3668	8013229.4393	L-RC-452	
453	373668.9764	8011455.3339	R-RC-453	453	374208.9148	8013210.6539	L-RC-453	
454	373665.8014	8011425.9651	R-RC-454	454	374236.4080	8013196.9493	L-RC-454	
455	373663.1309	8011394.3835	R-RC-455	455	374253.8940	8013175.9934	L-RC-455	
456	373657.7531	8011370.4277	R-RC-456	456	374257.8206	8013157.2716	L-RC-456	
457	373651.0376	8011337.3824	R-RC-457	457	374271.3214	8013108.4416	L-RC-457	
458	373643.7830	8011311.1609	R-RC-458	458	374280.6160	8013074.8247	L-RC-458	
459	373635.3163	8011273.2725	R-RC-459	459	374296.7566	8013029.1494	L-RC-459	
460	373624.7330	8011240.2524	R-RC-460	460	374301.4220	8012999.3425	L-RC-460	
461	373610.3976	8011199.7459	R-RC-461	461	374288.6542	8012960.5814	L-RC-461	
462	373599.1263	8011164.0271	R-RC-462	462	374255.2258	8012923.2166	L-RC-462	
463	373581.9813	8011134.0233	R-RC-463	463	374194.3845	8012912.0893	L-RC-463	
464	373573.7262	8011113.5445	R-RC-464	464	374187.7480	8012855.3178	L-RC-464	
465	373567.6299	8011088.9103	R-RC-465	465	374158.7598	8012834.4962	L-RC-465	
466	373559.8041	8011062.7167	R-RC-466	466	374136.5593	8012809.4560	L-RC-466	
467	373551.1258	8011044.0900	R-RC-467	467	374119.7500	8012771.9738	L-RC-467	
468	373543.2462	8011022.1043	R-RC-468	468	374092.9960	8012707.4841	L-RC-468	
469	373536.8962	8011000.8317	R-RC-469	469	374077.5260	8012673.5697	L-RC-469	
470	373524.5136	8010978.7655	R-RC-470	470	374085.7354	8012639.2235	L-RC-470	
471	373509.1149	8010968.4467	R-RC-471	471	374066.1529	8012613.3042	L-RC-471	
472	373496.3040	8010954.5548	R-RC-472	472	374064.1874	8012561.4974	L-RC-472	
473	373488.3997	8010936.5705	R-RC-473	473	374039.4372	8012534.7052	L-RC-473	
474	373483.9479	8010910.6471	R-RC-474	474	374037.5076	8012483.6877	L-RC-474	
475	373451.1710	8010851.1302	R-RC-475	475	374045.9412	8012443.7324	L-RC-475	
476	373445.2972	8010822.7139	R-RC-476	476	374048.2462	8012417.4050	L-RC-476	
477	373431.8035	8010791.4401	R-RC-477	477	374035.0668	8012390.3261	L-RC-477	
478	373414.8172	8010753.9750	R-RC-478	478	374050.3970	8012347.1643	L-RC-478	
479	373395.7671	8010708.4137	R-RC-479	479	374039.5026	8012309.9676	L-RC-479	
480	373389.0996	8010687.9349	R-RC-480	480	374028.9789	8012270.0075	L-RC-480	
481	373368.9383	8010661.4236	R-RC-481	481	374029.8566	8012219.3986	L-RC-481	

VERT	CES FAJA MA	RGINAL MARGE	EN DERECHO	VERTICES FAJA MARGINAL MARGEN IZQUIERDO			
N°	COORD	ENADAS	0001510401611	N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN
482	373358.4608	8010624.7522	R-RC-482	482	374009.0207	8012143.6615	L-RC-482
483	373343.5383	8010593.6372	R-RC-483	483	373981.2394	8012075.2004	L-RC-483
484	373327.9807	8010566.4909	R-RC-484	484	373967.6794	8012005.7471	L-RC-484
485	373312.1057	8010530.6133	R-RC-485	485	373947.3375	8011944.6104	L-RC-485
486	373292.5794	8010498.2282	R-RC-486	486	373935.1882	8011911.2521	L-RC-486
487	373270.6719	8010465.8432	R-RC-487	487	373917.8004	8011889.8351	L-RC-487
488	373240.8346	8010431.1553	R-RC-488	488	373888.1229	8011834.7995	L-RC-488
489	373215.4345	8010392.5261	R-RC-489	489	373865.0473	8011754.6517	L-RC-489
490	373176.0216	8010394.9433	R-RC-490	490	373842.0021	8011695.1918	L-RC-490
491	373154.7493	8010379.5903	R-RC-491	491	373820.6892	8011650.8804	L-RC-491
492	373131.8473	8010343.8428	R-RC-492	492	373810.0933	8011606.0306	L-RC-492
493	373107.4843	8010342.2551	R-RC-493	493	373793.3752	8011549.0766	L-RC-493
494	373079.0034	8010339.2074	R-RC-494	494	373761.3480	8011485.1201	L-RC-494
495	373045.9608	8010315.3159	R-RC-495	495	373798.4711	8011460.9362	L-RC-495
496	373043.2727	8010271.3953	R-RC-496	496	373837.5307	8011432.1235	L-RC-496
497	373015.6076	8010258.4482	R-RC-497	497	373845.2297	8011418.7557	L-RC-497
498	372990.1414	8010247.2034	R-RC-498	498	373835.7473	8011395.0461	L-RC-498
499	372968.4063	8010231.8550	R-RC-499	499	373808.7005	8011381.7477	L-RC-499
500	372955.7062	8010223.7323	R-RC-500	500	373779.2984	8011367.2913	L-RC-500
501	372935.3333	8010208.9156	R-RC-501	501	373761.3566	8011343.8785	L-RC-501
502	372898.1084	8010185.5435	R-RC-502	502	373743.3649	8011307.1013	L-RC-502
503	372858.0336	8010171.7722	R-RC-503	503	373735.4274	8011281.1721	L-RC-503
504	372828.8912	8010139.9386	R-RC-504	504	373730.9295	8011254.4491	L-RC-504
505	372784.6710	8010112.0681	R-RC-505	505	373687.5377	8011222.4345	L-RC-505
506	372742.3987	8010087.1276	R-RC-506	506	373648.9085	8011184.8636	L-RC-506
507	372695.7261	8010060.4576	R-RC-507	507	373624.6157	8011125.2062	L-RC-507
508	372641.4864	8010029.4483	R-RC-508	508	373605.4638	8011073.5267	L-RC-508
509	372604.7093	8010006.9587	R-RC-509	509	373582.5508	8011013.2545	L-RC-509
510	372571.3717	8009985.2628	R-RC-510	510	373569.0531	8010964.3392	L-RC-510
511	372565.7775	8009951.2202	R-RC-511	511	373569.5822	8010919.3600	L-RC-511
512	372578.0300	8009950.4583	R-RC-512	512	373633.1575	8010865.8860	L-RC-512
513	372593.0583	8009960.1949	R-RC-513	513	373623.2928	8010847.6577	L-RC-513
514	372632.4284	8009911.5115	R-RC-514	514	373565.5077	8010825.0623	L-RC-514
515	372605.1441	8009881.2110	R-RC-515	515	373537.3030	8010814.3202	L-RC-515
516	372606.6050	8009853.5147	R-RC-516	516	373516.1095	8010780.2438	L-RC-516
517	372600.4938	8009834.4317	R-RC-517	517	373500.2613	8010755.5825	L-RC-517
518	372603.8534	8009820.7063	R-RC-518	518	373479.6228	8010716.4561	L-RC-518

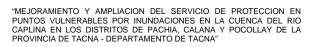
VERT	CES FAJA MA	RGINAL MARGE	EN DERECHO	VERT	ICES FAJA MA	RGINAL MARGEN	IZQUIERDO
N°	COORD	ENADAS	0001510401611	N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN
519	372631.3701	8009810.1230	R-RC-519	519	373465.6794	8010665.0410	L-RC-519
520	372660.1568	8009769.2712	R-RC-520	520	373452.4245	8010621.2798	L-RC-520
521	372664.7870	8009750.7107	R-RC-521	521	373428.2945	8010580.4280	L-RC-521
522	372618.5999	8009730.5568	R-RC-522	522	373407.1278	8010551.6413	L-RC-522
523	372595.7796	8009720.9656	R-RC-523	523	373399.7194	8010510.7896	L-RC-523
524	372571.6363	8009708.3979	R-RC-524	524	373387.4427	8010478.6162	L-RC-524
525	372553.5123	8009697.8674	R-RC-525	525	373373.4727	8010437.7644	L-RC-525
526	372537.2139	8009683.4741	R-RC-526	526	373353.5760	8010407.4960	L-RC-526
527	372521.5506	8009675.0074	R-RC-527	527	373304.8403	8010373.8078	L-RC-527
528	372503.9822	8009667.3874	R-RC-528	528	373294.1666	8010343.6636	L-RC-528
529	372485.9029	8009646.7356	R-RC-529	529	373290.9765	8010312.1072	L-RC-529
530	372463.1487	8009620.8064	R-RC-530	530	373301.8743	8010295.5655	L-RC-530
531	372427.6945	8009600.6980	R-RC-531	531	373321.2873	8010253.2082	L-RC-531
532	372397.0027	8009589.5855	R-RC-532	532	373345.5229	8010224.8420	L-RC-532
533	372379.0110	8009573.1813	R-RC-533	533	373328.3932	8010209.2176	L-RC-533
534	372365.1815	8009558.5640	R-RC-534	534	373303.4109	8010216.7840	L-RC-534
535	372349.8356	8009542.9536	R-RC-535	535	373274.4125	8010195.8289	L-RC-535
536	372336.8710	8009527.6077	R-RC-536	536	373274.3963	8010167.2720	L-RC-536
537	372307.5022	8009510.6743	R-RC-537	537	373277.9222	8010139.6603	L-RC-537
538	372285.8775	8009496.7166	R-RC-538	538	373272.9480	8010108.0047	L-RC-538
539	372247.7063	8009474.1618	R-RC-539	539	373255.1772	8010092.5354	L-RC-539
540	372230.2437	8009458.8159	R-RC-540	540	373245.1138	8010060.5497	L-RC-540
541	372194.8686	8009433.6213	R-RC-541	541	373231.9686	8010040.8116	L-RC-541
542	372162.9598	8009422.3500	R-RC-542	542	373217.9768	8010020.7273	L-RC-542
543	372131.5272	8009412.3487	R-RC-543	543	373204.8534	8010009.5090	L-RC-543
544	372092.1571	8009405.6812	R-RC-544	544	373199.9850	8009995.9623	L-RC-544
545	372068.5034	8009406.7925	R-RC-545	545	373212.8438	8009954.9518	L-RC-545
546	372041.9920	8009409.6500	R-RC-546	546	373227.1704	8009918.8679	L-RC-546
547	372020.8783	8009405.3637	R-RC-547	547	373238.2968	8009885.0487	L-RC-547
548	372009.6070	8009390.7587	R-RC-548	548	373168.1587	8009805.0151	L-RC-548
549	371997.7007	8009365.8349	R-RC-549	549	373109.6159	8009764.5998	L-RC-549
550	371982.3019	8009341.8636	R-RC-550	550	373049.4897	8009740.4801	L-RC-550
551	371969.6019	8009318.2098	R-RC-551	551	373001.7958	8009725.7903	L-RC-551
552	371961.4457	8009299.6531	R-RC-552	552	372945.0320	8009705.5550	L-RC-552
553	371948.8056	8009276.1410	R-RC-553	553	372882.8548	8009748.4176	L-RC-553
554	371938.0307	8009254.1519	R-RC-554	554	372829.6735	8009705.0259	L-RC-554
555	371924.1993	8009232.8021	R-RC-555	555	372816.8398	8009657.8510	L-RC-555

VERT	CES FAJA MA	RGINAL MARGE	N DERECHO	VERT	ICES FAJA MA	RGINAL MARGEN	IZQUIERDO
N°	COORD	ENADAS	0001510401611	N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN
556	371906.8955	8009203.9096	R-RC-556	556	372822.2363	8009621.7482	L-RC-556
557	371890.2267	8009178.1920	R-RC-557	557	372805.8609	8009605.7011	L-RC-557
558	371863.0804	8009148.9820	R-RC-558	558	372750.9333	8009670.1008	L-RC-558
559	371849.9042	8009133.9007	R-RC-559	559	372698.8103	8009724.6051	L-RC-559
560	371828.5003	8009098.7359	R-RC-560	560	372663.3336	8009710.7037	L-RC-560
561	371810.5079	8009072.5764	R-RC-561	561	372623.3153	8009689.8677	L-RC-561
562	371793.8391	8009048.2876	R-RC-562	562	372581.6433	8009662.7479	L-RC-562
563	371778.7840	8009014.8379	R-RC-563	563	372531.0416	8009617.4379	L-RC-563
564	371765.4490	8008990.3904	R-RC-564	564	372490.3619	8009587.6722	L-RC-564
565	371753.7811	8008969.3093	R-RC-565	565	372427.5232	8009557.2451	L-RC-565
566	371738.1439	8008929.4303	R-RC-566	566	372399.4112	8009531.7789	L-RC-566
567	371733.6730	8008910.5844	R-RC-567	567	372372.6220	8009503.9976	L-RC-567
568	371720.9989	8008885.9327	R-RC-568	568	372333.5959	8009476.2163	L-RC-568
569	371698.7739	8008887.2027	R-RC-569	569	372289.6089	8009448.1042	L-RC-569
570	371657.1813	8008901.9665	R-RC-570	570	372164.5960	8009385.3994	L-RC-570
571	371647.6563	8008889.4252	R-RC-571	571	372098.7907	8009371.9113	L-RC-571
572	371636.3279	8008900.1559	R-RC-572	572	372042.0975	8009378.0367	L-RC-572
573	371608.5466	8008893.4090	R-RC-573	573	372012.2152	8009324.2897	L-RC-573
574	371579.3609	8008887.4649	R-RC-574	574	371991.7039	8009291.4780	L-RC-574
575	371539.9784	8008880.3932	R-RC-575	575	371969.1317	8009237.0986	L-RC-575
576	371511.7089	8008874.7559	R-RC-576	576	371940.3582	8009184.1818	L-RC-576
577	371468.0526	8008878.3277	R-RC-577	577	371893.0638	8009123.3275	L-RC-577
578	371424.7931	8008906.9028	R-RC-578	578	371857.6757	8009059.1660	L-RC-578
579	371393.7008	8008924.9427	R-RC-579	579	371812.6964	8008997.9809	L-RC-579
580	371386.8781	8008919.7702	R-RC-580	580	371781.2771	8008934.1501	L-RC-580
581	371381.0967	8008912.0945	R-RC-581	581	371757.2806	8008864.0208	L-RC-581
582	371415.9159	8008880.9530	R-RC-582	582	371761.9188	8008832.9574	L-RC-582
583	371436.4212	8008862.9613	R-RC-583	583	371798.1668	8008793.7990	L-RC-583
584	371469.0448	8008833.9438	R-RC-584	584	371773.0314	8008764.9594	L-RC-584
585	371493.0421	8008814.6747	R-RC-585	585	371824.5758	8008719.5152	L-RC-585
586	371507.9911	8008807.7955	R-RC-586	586	371809.5439	8008678.1759	L-RC-586
587	371534.7276	8008841.6783	R-RC-587	587	371759.8022	8008613.3528	L-RC-587
588	371562.6277	8008828.8299	R-RC-588	588	371750.1747	8008590.5630	L-RC-588
589	371541.4615	8008769.4792	R-RC-589	589	371723.2896	8008564.9340	L-RC-589
590	371537.3617	8008748.4721	R-RC-590	590	371735.7684	8008548.1101	L-RC-590
591	371513.5273	8008708.9465	R-RC-591	591	371718.6150	8008513.6972	L-RC-591
592	371502.3589	8008690.5961	R-RC-592	592	371636.3954	8008496.1042	L-RC-592

VERTI	CES FAJA MA	RGINAL MARGE	EN DERECHO	VERTICES FAJA MARGINAL MARGEN IZQUIERDO			
N°	COORD	ENADAS		N°	COORI	DENADAS	
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACION
593	371489.6289	8008677.5681	R-RC-593	593	371568.9023	8008430.8229	L-RC-593
594	371475.2499	8008655.5285	R-RC-594	594	371527.4975	8008451.6921	L-RC-594
595	371469.7898	8008637.7891	R-RC-595	595	371489.9266	8008407.5066	L-RC-595
596	371460.9971	8008621.5969	R-RC-596	596	371472.4509	8008377.3483	L-RC-596
597	371451.3647	8008606.3601	R-RC-597	597	371456.4303	8008340.2229	L-RC-597
598	371438.6338	8008590.8989	R-RC-598	598	371408.8052	8008377.2117	L-RC-598
599	371429.7196	8008570.0704	R-RC-599	599	371392.5598	8008345.3294	L-RC-599
600	371413.9871	8008548.2678	R-RC-600	600	371384.8868	8008319.1356	L-RC-600
601	371402.1908	8008526.5554	R-RC-601	601	371368.3164	8008287.2029	L-RC-601
602	371389.7020	8008505.5273	R-RC-602	602	371340.2469	8008260.0084	L-RC-602
603	371377.8007	8008483.7261	R-RC-603	603	371310.6498	8008181.5900	L-RC-603
604	371365.4443	8008460.5605	R-RC-604	604	371290.2095	8008145.2933	L-RC-604
605	371354.2446	8008438.4540	R-RC-605	605	371264.0157	8008105.8703	L-RC-605
606	371342.3587	8008414.5960	R-RC-606	606	371244.6475	8008077.5902	L-RC-606
607	371330.2446	8008390.4540	R-RC-607	607	371227.3722	8008043.0968	L-RC-607
608	371313.5729	8008361.1319	R-RC-608	608	371207.3611	8008003.1408	L-RC-608
609	371302.7631	8008331.7376	R-RC-609	609	371196.7048	8007962.6607	L-RC-609
610	371287.7091	8008303.5165	R-RC-610	610	371179.3365	8007924.8611	L-RC-610
611	371277.4201	8008279.8591	R-RC-611				
612	371266.3587	8008258.5960	R-RC-612				
613	371258.1591	8008242.3719	R-RC-613				
614	371251.6266	8008227.8115	R-RC-614				
615	371241.4627	8008212.7183	R-RC-615				
616	371234.8700	8008198.3442	R-RC-616				
617	371224.6311	8008181.9316	R-RC-617				
618	371217.6045	8008162.7545	R-RC-618				
619	371209.6024	8008141.2214	R-RC-619				
620	371200.7631	8008121.7375	R-RC-620				
621	371189.9614	8008102.2685	R-RC-621				
622	371175.9599	8008088.5790	R-RC-622				
623	371157.3003	8008073.8156	R-RC-623				
624	371142.9184	8008060.9928	R-RC-624				
625	371145.0222	8008045.5500	R-RC-625				
626	371154.7588	8008031.5800	R-RC-626				
627	371170.6339	8008012.1066	R-RC-627				
628	371171.4352	8007994.5730	R-RC-628				
629	371164.1251	8007973.6626	R-RC-629				


VERTI	VERTICES FAJA MARGINAL MARGEN DERECHO				VERTICES FAJA MARGINAL MARGEN IZQUIERDO			
N°	COORDENADAS		0001510401611	N°	COORI	DENADAS		
VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	VERTICE	ESTE X (m)	NORTE Y (m)	CODIFICACIÓN	
630	371161.7202	8007961.5315	R-RC-630					
631	371159.6229	8007945.2446	R-RC-631					
632	371146.3451	8007930.6942	R-RC-632					
633	371131.3167	8007915.0308	R-RC-633					
634	371120.9450	8007901.4841	R-RC-634					
635	371108.2450	8007891.5358	R-RC-635					

Fuente Elaboración Propia.

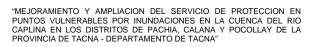

ANEXO VI MAPAS

0037

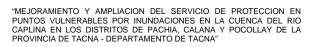
0036

0035

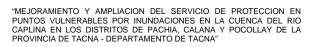
0034

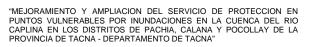


0033

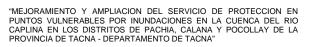


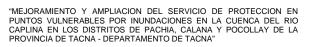
0032

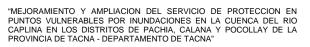

0031

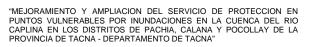


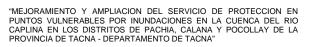
0027




0021


0020


0017



006

